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Thermal Expansion of
Three-Phase Composite Materials

Exact expressions are found for overall thermal expansion coefficients of a com-
posite medium consisting of three perfectly-bonded transversely isotropic phases of
cylindrical shape and arbitrary transverse geometry. The results show rhat
macroscopic thermal expansion coefficients depend only on the thermoelastic con-
stants and volume fractions of the phases, and on the overall compliance. The
derivation is based on a decomposition procedure which indicates that spatially
uniform elastic strain fields can be created in certain heterogeneous media by super-
position of uniform phase thermal strains with local strains caused by piecewise
uniform stress fields, which are in equilibrium with prescribed surface tractions. The
procedure also allows evaluation of therma. stress fields in the aggregate in terms of
known local fields caused by axisymmetric overall stresses. Finally, averages of local
Sields are found with the help of known mechanical stress and strain concentration

Sfactors.

1 [Introduction

In his 1967 paper, Levin found that macroscopic thermal
expansion coefficients of an elastic heterogeneous composite
medium, consisting of two distinct, perfectly-bonded isotropic
plases of arbitrary shape, depend in a unique way on the
overall elastic moduli of the aggregate and on the ther-
moelastic constants of the phases. Such coefficients are the
average overall strains caused by a uniform thermal change of
unit magnitude in a traction-free composite. Levin's results,
and their extension to binary systems with anisotropic consti-
tuents (Rosen and Hashin 1970), permit a direct evaluation of
these coefficients in terms of the known overall elastic moduli
and local thermoelastic constants. However, the approach
cannot be applied to compns’ s of three or more constituents
without additional informatirn about local stress concentra-
tion factors. Thermoelastic constants of such multiphase
media can be bounded with the help of thermoelastic ex-
tremum principles (Schapery 1968, Rosen and Hashin 1970),
or evaluated in terms of estimated values of phase stress con-
centration factors which are indicated by certain averaging
techniques (Christensen, 1979), but their direct evaluation ap-
pears possible only in a few special cases. For example, Hashin
(1984) recently found an exact relation between the thermal
expansion coefficients and the bulk moduli of certain
statistically isotropic polycrystalline aggregates.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for presentation at the Joint ASCE/ASME Applied
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This work is concerned with the macroscopic response of
three-phase fibrous composite materials which are subjected
to simultaneous increments of uniform thermal change and
uniform overall stress or strain. In particular, we derive rela-
tionships between overall thermal expansion coefficients and
the overall elastic moduli of a composite medium which con-
sistc of three perfectly-bonded cylindrical pheses of arbitrary
cross-section. Similar connections are .ound between
mechanical and thermal microstress fields. Each of the phases
can be transversely isotropic or isotropic; phase properties are
assumed to be temperature independent within the applied in-
crement. Unidirectional hybrid fiber composites, or binary
systems reinforced by coated aligned fibers, can be regarded as
particular examples of such three-phase media.

2 Governing Equations

The composite material under consideration consists of
three perfectly-bonded homogeneous phases. Each of the
phases is of cylindrical shape and is, at most, transversely
isotropic about the *‘fiber’’ direction x, of a Cartesian coor-
dinate system. In the transverse x, x,-plane, the cross-sections
and the distributions of the phases can be arbitrary, providing
that all such transverse sections are identical and the com-
posite can be regarded as statistically homogeneous and free
of voids. Overall isotropy in the transverse plane is permissible
but not required; thus, the composite medium may have only
one plane of elastic symmetry. The thermoelastic constants of
the phases are known. Also, the overall elastic stiffness tensor
L and the compliance tensor M of the aggregate are assumed
to be known; they can be determined experimentally or
cstimated by various averaging methods. For example, the
self-consistent method (Hershey, 1954; Budiansky, 1965 Hill,
1965), the Mori-Tanaka (1973) procedure, and the differential
scheme (McLaughlin, 1977; Norris, 1985) lead to such

Transactions of the ASME
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estimates. Also, Walpole (1984) gives bounds on overall
mechanical properties of some of the multiphase materials
considered herein.

A representative volume element V of the composite is
selected and subjected to certain uniform overall stress 3, or
strains é, which are imposed by prescribed surface tractions or
displacements applied at the surface S of volume V. Also, a
certain uniform thermai change has been applied such that 6,
is the corrent uniform temperature in V. Suppose that at this
par-icular point of the loading sequence, the aggregate is sub-
jected to simultaneous, uniform, infinitesimal increments of
df and dé, or of df and dé. The response of the aggregate to
these load increments is described by the constitutive equa-
tions

dé=Mds+wdd, da=Ldé-1d6, (0))

where L, M are the known (6 x 6) overall stiffness and com-
pliance matrices, and 1, m are (6 x 1) overall thermal stress and
strain vectors which are to be found in terms of L or M, and
the thermoelastic constants and volume fractions of the
phases.

The thermoelastic properties and response of the transverse-
ly isotropic phases can be described by phase variants of equa-
tion (1). A particular form, which will be useful in the sequel,
relates the axisymmetric stress and strain invariants of the
transversely isotropic medium (Dvorak, 1986):

()2 [0 (GG e
(bl ()Ll o

where k, I, n are Hill's (1964) elasti- moduli, E=n - P/k,
a=2ar, B=a,,and ar, a; are the linear coefficients of ther-
mal expansion in the transverse plane and in the longitudinal
direction, respectively. For an isotropic phase with the usual
elastic constants K, G, and », one finds that k=G/(1 - 2»),

1=K~-2G/3, and n=K+4G/3. The strain and stress in-
variants are defined as:

Jomanl of Applied Machanics

(d6.4¢)
dé. =d£” +d€u, déz =d€33.
dol = I/Z(ddn +d022), daz =d033. (4)

In the sequel, the three phases will be denoted by letters £, g,
and m, or by a single letter r=£, g, m. For example, the phase
volume fractions ¢, + ¢, + ¢, = 1. Equations (2), (3), with
appropriate values of thermoelastic constants, will describe
the response of each phase to the respective axisymmetric in-
variants (4).

3 Decomposition Procedure

The unknown thermal stress and strain vectors |, m of the
three-phase composite medium will be found with a special
form of the decomposition procedure of Dvorak (1983, 1986,
1987). In the first step of the procedure which is illustrated in
Fig. 1, the three phases are separated and surface tractions or
displacements which preserve the current local stresses o7, and
strains ¢/, are applied to each phase »r = f, g, m. Then, a
uniform thermal change d@ is applied to each rt ise. This
causes uniform, but dissimilar thermal strains or s.resses (2),
(3), in the phases, so that the phases are no longer compatible
and cannot be reassembled. To make the phases compatible,
auxiliary uniform stress increments of as yet unknown
magnitude are applied to each phase simultaneously with df.
These stress increments are limited to the components which
appear in (4), and are axisymmetric, i.e., do;,, = doy.
Therefore, the corresponding strains are also liraited to those
in (4), with de), = dey, and follow from (2). The auxiliary
uniform fields in the separated phases, which are denoted in
the sequel by top hats, are thus given by:

dé{ = (nddf - 1,dd5)/k,E, + a,db, (6]
déf = (n,do% - 1,dé§)/ k E, + a,db, ()
de7=(n,,dd7=1,d07 )/ kpE,, + amd, ™
dé, = (- 1,d¥] + k,d¥})/ k E, + B,df ®
del = (—1,d8} + k,do)/k,E, + B,d0 )

dep= (= 1,dO7+ kpdd])/ Kk Ep + Bdd. (10)

We recall that each of the contributing fields in (5) to (10) is
axisymmetric and spatially uniform. Therefore, internal

JUNE 1989, Vol. 56 / 419




equilibrium and compatibility of the phases can be assured by
the following conditions which relate the total uniform fields:

dé| =dét = deT (n

dé| = dét =déT=dQ, (12)
dé| =dét = deT (13)

¢/ ddh + ¢, dét + c,,doT=dQ,. (14)

Here, dQ,, dQr are the overall stress components which
must be applied to the surface S ¢ ¥ while dé] and dd} are ap-
plied to the phases. They are defined by the overall forms of
(4,, 4,), but unless the composite medium has an axis of rota-
tional symmetry x, they are not necessarily invariant in the
overall stress space.

The fourteen equations (5) to (14) can be solved for the
twelve stresses and strains da7, déj, dé, dé;, and for dQ,,
dQ;. The solution gives the magnitudes of the overall stress
components dQ,, and dQ,, which, if applied together with
the uniform thermal change df, would create a spatially
uniform incremental strain field in the heterogeneous
medium. In reality, such overall stresses are not prescribed.
Tl.erefore, they must be eventually removed by application of
-dQ,, and —dQy to the surface S of V.

The existence of the solution of the system of equations
should be verified in each case, but if there are no special rela-
tionships between phase properties, the solution exists and can
be found as follows: Equations (5) to (7) are substituted into
(11), and (8) to (10) into (12). These, together with (13) and
(14) are then solved in terms of df. The result is:

dQ, =s,d8 us)
dQy =srdb (16)
where,
Sq=(ayb, —a,by)sy +ayb, —a,b;)/(b, - a)) (un
57 =(BjmCyy = By C))/ (AgyBjm ~ By A y) (18)

with scalar quantities
n n ! { {
A = [ P _ q - P P - q ] (19)
P ( kPEP kGEO ) kP ( kPED quq )
By =(l,/k,—1,/k,)/E, (20)
Coo =1, (B, =B,V k, +(ag - a,) @n

where the subscripts p, g, assume the phase designations f, g,
m for the phase moduli k,, /,, n,,and E,; p # q.
The remaining terms in (17) are:

I, kE, l;  KnEwm
a,=c/+c +Cpm (22)
' ' kE, L, kiE; 1
k E n n
ay=c, 4=t (—t___ "
v, (k,s, k,E,)
k,,E,,, o n/
A k,E,) @)
ay=c,k Efay—ap)/ly+ CokpEy (am—ap)/ly, (24)
by=c,+c,E,/E;+c ,E/E 2%)
VAR ol M/ 4 /
l { { i
by=c,E, (—t—~—L) +c,E, (——-—L-) (26
1 (k,e k,E,) " (k,,,E,, It,E,)
by=c,E[8,—B,) +CnEm (B;~84). 27

The solution of the system (5) to (14) can be written in the
following form which reflects a change from the invariants (4)
to the (6 x 1) vectors. The local auxiliary strain fields are:

420/ Vol. 58, JUNE 1989

1
dt"lll =d€'{z =T d(‘{=h|d0
dé&; = dél = h,db

1
defy = défy = — 2t < h,db

' (28)
dét, = dét = h,db

1
dé‘ﬂ =d6d2"2 =—2- df",":h,dﬁ
dé?, = dé= h,df

where

1

AyCoy— Ay C,
h,-—?(n,s,—l, gom = AmCy

Axfom ~AnByy
AyCrmy =~ Am/Cy
hy =k -1 /(k .
: ( 7 AyBm—AmBy, /ST) k) =3y
The local auxiliary stress fields are:
dé{, =déf; =dd| = sdb
3y =dof =ys,db
dét =déty =dét =s5,db

I
)/(k,15,)+7 a  (29)

(30)

an

dafly = dod = psrdb

déT, =doP =doT=s,db

défy =doT=ysrdb
where
32)
(33)
(34)

Y=(AyCos=AmCyy)/ (BmCos =~ B, Corp)
p=Dy /By + Cpp/ (5rBy)
V=Dpy/B s+ Cppn/(5rBpy)
and, with reference to the notation used in (19) to (21):
!

- k,;_’-',)]'

The final results that appear in the sequel assume a more
concise form with the definitions:

b=[h,, A, h,,0,0,0]7
s=(sr, 57,54, 0,0, 0]
y=[(1,1,9.0,0, 017
p=[1,1,0,0,0,017
‘g[ll l' ¢I o' 0' olr
where [ )7 denotes a transpose and the coefficients appear in
(17), (18), and (32) to (34).
In the final step of the decomposition procedure, the phases
are reassembled and the auxiliary surface tractions are remov-

ed by application of overall stresses -dQ,, —dQy. This leads
to the resulits described in the next section.

n n { {
D =[( P s -1 14
=Gk k) 7 (E

(35)

(36)

4 Overall Properties and Local Fields

The aforementioned results make it possible to write direct-
ly the expression for the overall strain increment caused in the
composite by superposition of simuitaneous increments of dé
and d@, and also the expression for the overall stress increment
in a composite subjected to simultaneous changes df and di:

di=h dd+M(da-s df) (37
de=s dé+L(di-h db). (38)
A comparison with (1) yields the unknown overall thermal

strain and stress vectors, which contain the desired overall
thermal expansion coefficients:

Transactions of the ASME




m=h-Ms (39)
I=-s+Lh. (40)

To facilitate applications we note that the overall thermal
strain vector

m=[a,, a, a3, &, a5, ag)” (41)

and
I=L m. 42)

If the medium has only one plane of elastic symmetry
perpendicular to x,, then the overall compliance M in (39)
depends on 13 independent elastic coefficients. Examples in
Section 5 show that, in this case, a, = as = 0. On the other
hand, if the medium is transversely isotropic, then m can be
written in the form

43)

where ar, a, are the overall linear coefficients of thermal ex-
pansion in the transverse plane and in the longitudinal direc-
tions, respectively. Then, using (39), one can find these coeffi-
cients in the explicit form:

II!=[QT. xr, Qyq» 0,0, o]r

(nsy—Isy) (44)

1
2(nk - )

ar=h| -

1
a, =hz‘m'(k54‘15r)- (45)

If the volume fraction of one of the phases is reduced to
zero, then one recovers from these formulae the results for
binary composites given by Dvorak (1986).

Note also that the decomposition procedure suggests the
following connection between thermal microstress fields in the
composite and mechanical microstress fields under axisym-
metric uniform overall stresses. In particular, suppose that lat-
ter are written in the form

do(x;)=B(x,) d& (46)
where B(x;) describes the spatial distribution of the local
stresses under any overall stress do. As a minimum, B(x,) must
describe the response to axisymmetric uniform stresses dé,, =
day, = d&,, and d&,y, = d&,. According to the decomposition
sequence, the local thermal stresses after the reassembly of the
aggregate are given by (31). In the final step, one must remove
the axisymmetric surface stresses dQ,, dQr, represented by s
in (36). Of course, that can be done using (46) to yield:

In phase f: do(x;)=s; v+ B(x;(d8 — sdf)

In phase g: do(x;) =sr p + B(x;(d& — sdf)

In phase m: do(x;) =57 ¢ + B(x,)(d® - sdb)
where d8 and d& are the prescribed uniform thermal change
and overall stress vector, respectively.

Similarly, if instead of (46), there is a known connection
between local and overall strains in the form:

de(x;) = A(x,)d¢ (48)
then one finds from (28) and (36) the local strain field in the

aggregate loaded by a uniform thermal change dé and an ar-
bitrary overall strain di:

de(x;)=hdb + A(x;}(dE—h db). (49)

These results can be readily reduced to those for average
stresses and strains in the phases. If the mechanical stress and
strain concentration factors B, and A, of the phases are
known, then the local averages can be written in the form

do, = B,dé+b,dd
de, = A dEé—a.db r=f.8.m)
where the phase thermal stress concentration factors are:

“n

(50)
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b, = s;y—-Bs

b, = spp~B,s (51
b, = s;y-B,s

2, = (A, -Dh, r=(f,g.m).

5 Examples

To illustrate the results (39) to (42) we consider first a three-
phase composite with transversely isotropic phases. Overall
material symmeiry elements are limited to a single plane of
elastic symmetry with the normal x,. The overall compliance
matrix M has the following form:

My, M, M, 0 Y Mg ]
M, My My 0 0 My
M= |M; My M, 0 0 M, (52)
6 0 0 M, Mg 0
0 0 0 My My 0
(Mg My My 0 0 Mg |

The stiffness matrix L is formally similar to M. Now, h is

taken from (36) and substituted, together with M, into (39).

That leads to an explicit form of (41):

hy =My sp—Msr—M3s, ]
1 =MuSr—=Mpsr—Mys,

h, _MIJST—%lBST—MJJSA

0
—M\Sr—Mysr—Mys,

(53)

One also finds from (40) that

[ =sp+Lyhy+ Lk + Ly
-ST+LthI +Lzzh| +thz

1= —SA +L|lhl BLZJ"' +L33h2 (54)

0
Ligh) + Laghy + Lyghy

If the arrangement of the three transversely isotropic phases
is such that the composite medium is transversely isotropic,
then the coefficients Mys = My, = My, = M = 0in (50)
and also, Lyy = Ly = Lyg = Ly = 0. The specific forms of
(41) and (42) then follow in an obvious manner from (53) and
(54).

6 Coanclusion

The results represent exact connections between overall
elastic thermal stress and strain vectors, overall stiffness L or
compliance M, and phase thermoelastic properties of a three-
phase composite medium consisting of perfectly-bonded cylin-
drical phases of arbitrary transverse geometry. They remain
formally unchanged, except for L and M, if the overall elastic
symmetry properties of the composite are modified within the
indicated constraints. Application of the decomposition pro-
cedure is limited to such combinations of phase properties for
which the governing equations can be solved. The exceptional
cases can be established by examination of (17) and (18). For
example, one such exception would arise if all three phases
were isotropic and if any two of them had the same Poisson’s
ratio. Another such exception occurs when the three phases
have identical mechanical properties but different thermal ex-
pansion coefficients. Furthermore, in an n-phase fibrous
medium the decomposition leads to S» — 1 equations for 4n +
2 unknowns. Hence, the system can be solved for n = 3, and it
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allows a choice of an additional constraint if n = 2. This last
property was utilized by Dvorak (1986) ih an application of
this procedure to binary fibrous systems with an elastic-plastic
matrix.

A particularly useful result is given by (47) and (49) which
show that not only the overall response (37) and (38), but also
the local thermal fields can be evaluated from known
mechanical fields by a modification of the overall stress or
strain increment, and by an addition of a piecewise uniform
stress field or a uniform strain field.
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ABSTRACT

Exact expressions are found for overall thermal expamsion coefficients of
a composite medium consisting of three perfectly honded, tramsversely
isotropic phases of cylindrical shape and arbitrary transverse geometry.

INTRODUCTION

In his 1967 paper, Levin (1) found that macroscopic thermal expansion co-
efficients of an elastic heterogeneous composite medium, comsisting of two
distinct perfectly bonded isotrapic phases of arbitrary shape, depvend in a
unique way on the overall elastic moduli of the aggregate and on thermoelastic
constants of the phases. Such coefficients are the average overall straims
caused by a uniform thermal change of unit magnitude in a traction free com
posite, Levin's results, and their extemsion to binary systems with aniso-
tropic constituents (2], permit a direct evaluation of these coefficients in
terms of the known overall elastic moduli and local thermoelastic constants.
However, the approach cannot be applied to composites of three or more con-
stituents., Thermoelastic comstants of such multiphase media can be bounded
with the help of thermoelastic extremum ,rinciples [2,3]), or estimated with
certain aversging techniques [4), but the r direct evaluation appears possible
only in few special cases. For example, hishin [S] had recently found an
exact relation between the thermal exparsion coefficient and the bulk modulus
of certain statistically isotronic polycrystalline aggregates.

The present work davelops an exact relatiomhip between overall thermsl
expansion coefficients and the overall elastic moduli of & compasite medium
which comists of three perfectly bonded cylindrical phases of arbitrary cross
section. Unidirectional hybrid fiber composites, or binary systems reinforced
by aligned coated fibers can be regarded as particular examples of such three-
phase media.
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The unknown thermal stress and strain vectors 1, m of the three-phage
composite medium will be found with a special form of the decomposition pro-
cedure of Dvorsk {7]. In the first step of the procedure, the three phases
are separated and surface tractions or displacements which preserve the
current local stresses 00 and strains ¢© are applied to each phase r » f,2,m.
Also, a uniform thermal change d& 1s applied to each phase. This causes uni-
form byt dissimilar thermal strains or srresses (2) in the phases, so that the
phases are no longer compatible and cannot be reassembled. To make the phases
compatible, asuxiliary uniform stress increments of & yet unknown magnicude
are applied to each phase simultaneously with d8. (The auxiliary uniform
fields are denoted by top hats.) This causes the following strain increments
in the separated phases:

aef o (ngdof-15d0f) /keEgrapde,  de) = (-1gdofekpdad) /keEprseds
- - - - .g -
de? - (ngdogl-lgdag)/kgsgﬂ:gdﬁ, dc% - (-lgdcpkgdog)/kztzdgde (&)

4] = (npdof-1adoD) /kgkn*agds,  ded = (~LpdoT+icndoD) /knEyrtnde

Each of the contributing fields in (4) is spatially uniform. Therefore,
internal equilibrium and compatibility of the phases can be assured by the
following conditions:

- - - a -g -
dc{ - deg - dc? . dsg = dey = de'z'
" (s)
dof = dof = da? = dQp ' cfdog + cgdoy + cﬂ,dog = dQ,

Here, dQp, dQa are the overall stress components which must be applied to
the surface S of V wvhile d?f and dof are apprlied to the phases. Thev are de-
fined by the overall form of (3), iut unless the composite mediums has an axis
of rotationsl symmetry x3j, they are not necessarily invariant in the overall
stress space. The fourteen equations (4) and (S) can be solved for the twelve
stresses and strairs dof, d&i. d:i’. del, and for dQr, dQ4. The solution gives
the magnictudes of the overall stréss components dQy, and dQ, which, if aspplied
togecher with the uniform thermal change d0, would create spatially uniform
incresental stress and strains fields in the heterogeneous mediua. In
reality, such overall stresses are not prescridbed. Therefore, they must be
removed by aspplication of -dQp, ani ~dQ, to the surface S of V. After sowme
algebra one finds:

dQy = s de, dof = g,de, de§ « h,do
| (6)
dqQ, = s,de, doj = gade, dej = hyde

vhere r = f,g,m, and the constants sy, s,, hj, h2, g}, 82 depend only on the
thermoelastic constants and volume fractions of the phases. Space limttation
prevents complete liscting of the comtants.
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GOVERNING EQUATIONS

The composite material under consideration comsists of three perfectly
bonded homogeneous phases. Each of the phases is of cvliindrical shape and is
at most tramsversely isotropic about the "fiber” direction x3j of a Cartesian
coordinate systea. In the tramsverse x)xj;-plane, the cross section and the
distributions of the phases can be arbitrary, providing that all such trams-
verse sections are identical and the composite can be regarded as statisti-
cally homogeneous and free of voids. Overall isotropv in the trarsverse nlane
is permissible but not required; thus the composite medium msy have only one
plane of elastic symmetry. The thermoelastic comstants of the phases are
known. Also, the overall elastic stiffness temsor L and the compliance temsor
M of the aggregate are assumed to be known; they can be found bv several
available averaging methods [6].

A representstive volume element V of the composite is selected and sud-
jected to certain uniform overall stresses ¢° or strains €° which are imposed
by prescribed surface tractions or displacements applied at the surface S of
volume V. Also, a certain uniform thermal change has been applied such that
85 is the current uniform temperature in V. Suppose that at this particular
point of the loading sequence, the aggregate is subjected to simultaneous,
uniform, infinitesimal increments of d® and d3, or of d@ and dt. The respomse
of the aggregate to these load increments is described by the comstitutive
equations

dc = M do + mde, dg = Lde-14de, (1

waf

wvhere L, M are the known (6x6) overall stiffness and compliance matrices, and
1, m are (6x1) overall thermal stress and strsin vectors which are to be found
in terms of L or M, and the thermoelastic constants and volume fractions of
the phases.

The thermoelastic properties and response of the tramversely isotrooic
phases can be described by phase variants of (l). A particular form, which
wvill be useful in the sequel, relaces the sxisymmetric stress and strain
invariants of the tramsversely isotropic medium [7}:

fof & [ 3] o) - f o

where k, 1, n are Hill's elastic moduli, E = n - 12/k, a = 2ap, 8 = ag, and
ap,ap, are the linear coefficients of thermal expsmsion in the transverse plane
and in the longitudinal direction, respectively. The strain and stress invar-
iants are defined as:

dep = dtuﬁtzz: deyedeyy, 4o -% (doy+doyz), dop = dojj (3)

iIn the sequel, the three phases will be denoted by letters f, g, and =,
or by a single letter r = £ g.an. Por example, the phase volune fractions
C¢g + cg + cg = 1. Equations (2), with appropriate values of thermoelastic
constants, will describe the response of each phase to the resvective axisyw—
metric invarianes (3).




OVERALL PROPERTIES AND LOCAL FIELDS

The above results make it possible to write the expression for the over-
all strain increment de caused in the composite by superposition of simultan-
eous increments of d@ and do, and also the expression for the overall stress
{ncrement do in a composite subjlcted to simultaneous changes d6 and d'E

dc = h d8 + M(do - s d8) ; dg-sd9+yd§-hd6) n
a a -

where

T T
he [hl, hl' hz. 0, 0, 0] . ga - lsT, sT, sA. 0, 0, 0]

A comparison with (1) yields the unknown overall thermal strain and
stress vectors, which contain the desired overall thermal expamsion coeffi-
cients. One can also easily recover expresaions for averages of local fields
in the phases caused by the above changes in d8 and dG, or in d@ and de.

CONCLUSION

The results represent exact connections between overall elastic thermal
stress and strain vectors, overall stiffness L or compliance M, and phese
thermoelastic properties of a three-phase conpos ite medium consisting of per-
fectly bonded cylindrical phases of arbitrary tramsverse geometry. They re-
main unchanged, except for L and M, {f the composite becomes tramsversely
isotropic, a8 in the case of hybrid unidirectional plies or of unidirectional
binary systems with coated fibers.
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A micromechanics model is presented for the prediction of stress fields in coated fiber composites. The method s based on
the “average stress in the matrix” concept of Mori and Tanaka and is formulated for the case of thermoelastic loading. A
general description of the model is first given for three-phase materials and then specialized to the case of coated fiber
composites. Results are presented for typical coated fiber composite systems under a variety of mechanical ioading situauons

and uniform temperature change.

1. Introduction

Micromechanics analysis of composite materi-
als often relies on Eshelby’s (1957) finding that
the strain field in an ellipsoidal inclusion bonded
to a uniformly strained infinite medium is also
uniform. This result is commonly used to evaluate
overall properties and average local fields in com-
posite aggregates in terms of the phase strain and
stress concentration factor tensors, which have
been determined for many practically useful inclu-
sion shapes. Unfortunately, the above result no
longer holds when the inclusion is surrounded by
a layer of coating which is then bonded to the
surrounding medium. Local fields in coated inclu-
sions are generally not uniform, hence the phase
concentration factors cannot be easily evaluated.
Therefore, analysis of composites reinforced by
coated fibers or particles is one of the more dif-
ficult problems in micromechanics.

Available solutions of problems of this kind
can be found in the papers by Walpole (1978) and
Hatta and Taya (1986). Walpole considers a com-
posite with dilute reinforcement under mechanical
loading. He develops his solution from the as-
sumption that a very thin coating has no effect on
strain distribution in the particles. The analysis
thus becomes similar to that of an uncoated par-

* On sabbatical leave from Tel-Aviv University.

ticle, and the fields in the coating are found using
Hill’s (1972) interface conditions. As Walpole re-
marks, the procedure does not give reliable results
even for thin coatings whén the coating is either
extremely weak or extremely strong. Hatta and
Taya consider the heat conduction problem in
composites reinforced by short coated fibers, in
the context of the original Mori-Tanaka method.

The present paper is concerned with evaluation
of local fields and overall thermomechanical
properties of composites reinforced by coated
fibers or particles. The results are derived from a
variant of Benveniste’s (1987) reexamination of
Mori-Tanaka’s method. In particular, the local
fields in a coated inclusion are approximated by
those found when the coated inclusion is em-
bedded in an unbounded matrix medium sub-
jected to the average matrix stresses (or strains) at
infinity. The advantage of this approach is that
the local fields in the coating and inclusion, and in
the adjacent matrix can be evaluated by using the
solution of a single coated particle in an infinite
matrix and particle interaction is taken into
account through the yet unknown average matrix
stresses. The first two sections describe, respec-
tively, the procedure for evaluation of local fields,
and overall or effective thermomechanical proper-
ties, of matrix-based composites consisting of three
anisotropic phases of arbitrary geometry. We show
that the results are consistent in that the overall

0167-6636/89/33.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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compliance tensor is the inverse of the stiffness
tensor. and that the required connections between
the predicted overall thermal strain tensors and
stiffness tensors are satisfied. Then, specific results
are found for systems reinforced by aligned coated
fibers, where the phases are isotropic. The case of
coated anisotropic fibers will be considered
elsewhere.

2. Stress and strain fields in three-phase com-
posites

Consider a three-phase composite material con-
sisting of a continuous matrix phase m, in which
there are embedded inhomogeneities of a particle
or fiber phase f, and a third phase g which, in
Section 4, will represent a layer of coating that
encapsulates each particle or fiber of the f phase.
However, the results of this and the next section
are valid for any microstructural geometry of a
matrix-based three-phase medium, so the phases f
and g can be thought of as two different rein-
forcement materials. The thermoelastic constitu-
tive equations of the phases are given in the form

o=Lg +10 (1)
¢, =Mgo, +m,0 (2)

where r=f, g, m; L,, and M, =(L,)"" are the
stiffness and compliance tensors; [, is the thermal
stress tensor and m, is the thermal strain tensor of
the expansion coefficients, such that

{,=—-L,m,. (3)

Define tne following thermomechanical loading
problems:

6(S) =8, (4)
6(S) =6, (5)

where 0,(S) and #(S) are the traction and dis-
placement vectors at the external boundary S of a
representative volume V¥ of the composite under
consideration, a is the outer normal unit vector to
S. o, and ¢, are the applied constant stress and
strain fields; r denotes the coordinate system;
8(S) is the temperature rise at S, and 6, is a
constant quantity.

u(S) =¢yx.

0,(S) =ayn,

The composite medium is statistically homoge-
neous, with arbitrary phase geometry. The inclu-
sion phases can in principle have a certain disini-
bution in the ornientation of the symmetry axis but
are chosen herein. for simplicity, to possess a fixed
orientation.

Our first objective is to find certain general
relations between the local and overall stress and
strain fields in the aggregate. These relations will
be established using the concepts which were in-
troduced by Mori and Tanaka (1973). and reex-
amined by Benveniste (1987).

Consider the composite subjected to boundary
conditions (4) and denote the solution for the
strain field in the phases symbolically as
¢(x)=A4(x)e,+a,(x)b,, r=fg m, (6)
where A,(x) and a,(x) are fourth and second
order tensors, respectively. whose volume averages
A, and a, (no argument x) are usually referred to
as mechanical and thermal strain concentration
factors. Determination of the tensors A4,(x) and
a, (x) is achieved in this paper in an approximate
way by using the ideas in the original work of
Mori and Tanaka (1973). Specifically, the strain
field in each part of the reinforcement phases f or
g. i.e., in each particle or fiber, are assumed to be
equal to the fields in a single inclusion of phase f
or g which is embedded in an unbounded matrix
medium m and subjected to remotely applied
strains ¢, which are equal to the yet unknown
average strain in the matrix, and also to a uniform
temperature change 6,.

Suppose therefore that the single inclusion is
surrounded by a large matrix volume V' with
surface §’, Fig. 1a. The boundary conditions are
u(S')=e,x, 0(S’) =8, (7)
where ¢, is the unknown average matrix strain. In
analogy with (6) we write the solution in the
symbolic form

6.(x)=T(x)e,+1,(x)8, r=f.g (8)

where T.(x) and 1,( x) relate to single particles in
an infinite matrix and have phase volume averages
7., ¢, which are the strain concentration factors.
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S Q(S) = EoX
8(S) = 8,

, . 4(S) = gmx
n o4 8(8) = 8

gn(S) = go0
8(S) = 8,

., @n(S) =g’
,%/‘f-e(S') =8,

(b)

Fig. 1. A schematic representation of Mori-Tanaka’s method
for thermoelasuc problems.

To determine e, we recall that the overall
uniform strain ¢ and the local average strains ¢,,
which were found in the solution of the original
problem (4) are connected by the relations

e=Y ce,=¢,, r=f g m, (9

where ¢, denote the phase volume fractions, ¢, +
¢y + ¢ = 1. When (6) is averaged over the volume
of each phase, and the result introduced into (7),
one finds the unknown average matrix strain as

-1
€m ™ [ZQT»] [(O—OOEcr‘r]' f-f.gm.

(10)
Since the 7, and ¢, tensors refer to a single
inclusion in volume V' of the matrix, the state of
strain in the matrix is affected only in a small
volume adjacent to the inclusion, hence it follows
that in this special case
T,=1, t,=0, (1)
where [ is the fourth-order unit tensor defined by

l:/kl - i(slks/l + 8118/k) (12)

and §,, is the Kronecker symbol. Finally, substitu-
tion of (10) in (8) yields the desired approximation
for ¢,(x).

An entirely similar procedure can be applied
under stress boundary conditions (5). For the

composite aggregate we write in place of (6)
o(x)=B(x)o,+b(x)6,, r=fgm, (13)

where B.(x) and b,(x) have volume phase aver-
ages B, and b, which are referred 1o as the mecha-
nical and thermal stress concentration factors. In
the limiting case of a single incluston in volume ¥’
surrounded by S’, Fig. 1b, the solution assumes

the form
o(x)=W,(x)o,+w(x)b,, r=fg, (14)

The tensors W,(x) and w,(x) are related to their
counterparts in (8) by (Benveniste, 1987)

W(x)=LTI(x)M, r=fgm, (15)
w(x)=LT(x)my+L,t(x)+1,. (16)

Of course, according to the arguments leading to

(11) there is
W,=1I, w, =0, (17)

Next, write (9) in terms of stresses for the
problem (5):

o=3co =0, r=f.gm (18)

and use (14) to find the unknown average matrix
stress in the aggregate. The result is:

On = [}:c,w,]-'[oo— oo):c,w,]. (19)

which, when substituted into (14) gives the desired
approximation of a,(x).

3. Effective thermomechanical properties

In analogy with (1) and (2), define the thermo-
elastic constitutive relations of the composite
medium as
o=L¢+ 10 (20)
¢=Ma + mél, (21)
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where o, ¢ and 8 denote representative volume
averages. and L, M, and /, m have the same
interpretation in the overall sense as their counter-
parts in (1) and (2) had locally.

To find L and /, note that under boundary
conditions (4), the uniform field 4(x) =48, is a
solution of the problem in the representative
volume. Also, from (1), (9), and (20):

Y, (Le,+16,)=Ley+18,, r=f, g, m (22)

The volume average of (8), together with (10), can
be substituted into (22) to give

L- [;c,L,r,][);c,r,]". (23)
= [;c,L,r,ch,r,]'l[— ;c,r,]

+Y (Lt +1,). (24)

Similarly, under boundary conditions (5), one
can use (2), (18) and (21) to find that

2 c.(Mo, +mfy) = Mo, + mb,, (25)
which, through (14) and (19) furnishes

M~ [;c,M,W,][gc,W,]", (26)

-1
- [zc,u,w,][zc,w,] [- zc,w,]
+Yc,(Mw,+m,). (27)
We now prove the consistency of the method
which requires that the relations
M=L"", (28a)
I= —Lm (28b)

be satisfied by the effective properties L, M, and
I, m
Rearrange (26) to get

M[;c,w,] - [Z’:C,M,W']- (29)

Similarly. (15) and (29) .lead to

M[Zc,L,r,] - [‘Z c,r,], (30)
which allows one to write (23) in the form
L[Zc,r,] - [Zc,u,]. (31)

and thus show that (28a) is indeed satisfied.

To prove that (28b) is fulfilled by the / and m
found in (24) and (27), substitute (26) and (16)
into (27) and wrnite

m= —M[Zc,(L,T,m,+ Lt +1)
+2c,(Tm, +1,)|. (32)

Multiply both sides of (32) by L = M ™! and recall
(23) 10 get

—LM‘ZC,(LJ’*’,)'LZCJ" (33)

which is equal to the right hand side of (24).

We now examine certain limitations of the re-
sults found with the Mori-Tanaka method. First,
when the matrix volume fractions ¢, — 0. and
¢q+ ¢g= 1, one would expect to recover the prop-
erties of a binary composite consisting of the
latter phases in which the matrix properties would
play no role. However, according to their defini-
tions, the tensors T,, 7,, and ¢,, t,, depend on
matrix properties, but not on ¢,,. Therefore. com-
posite properties would contain elements of ma-
trix properties even in the limit ¢, — 0. Of course,
the method does not admit the phases on equal
footing, it reserves a distinct role for the matnx
and is not applicable to aggregates without a
continuous matrix phase. Therefore, the above
limit can be taken only with the understanding
that one of the remaining phases assumes the role
of the matrix. However, it is interesting to note
that in the limit c,, = ¢, = 0, one recovers L = L,,
m = m,, etc. Also, it can be proven that the matrix
properties happen to cancel out when the limit
¢m — 0 is taken in Mori-Tanaka estimates of the
properties of a composite reinforced by coated
spherical particles.
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We mention here that Benveniste (1987) has
proved that the Mori-Tanaka predictions of effec-
tive stiffnesses and compliances of two-phase
composites with randomly orientated inclusions
are bracketed by the Hashin-Shtrikman bounds
(Hashin and Shtrikman, 1963). For a discussion of
Mori-Tanaka's method in multiphase composites,
see also a recent work by Norris (1989). Effecuve
moduli estimates by this method in the case of
uncoated composites have been shown to exhibit
satisf ctory agreement with experimental results
(We ,g. 1984); Tandon and Weng, 1986). Finally,
in connection to thermomechanical problems in
coated-fiber composites it should be mentioned
that recent results by Dvorak and Chen (1988)
show that in three-phase fibrous composites made
of cylindrical phases, the overall / and m, can be
denved in a unique way from local thermomech-
anical moduli. volume fractions. and the overall L
and M without the knowledge of the respective
mechanical concentration factors 4,, B,. Further-
more, the tensors a(x), d(x). #(x), @(x). and
their phase volume averages can be derived in a
similar unique way in terms of the corresponding
mechanical concentration factors.

4. Application to coated fiber composites
4.1. Solution proc.dure

We now turn our attention to a specific three-
phase composite and consider a system reinforced
by coated cylindrical fibers of circular cross-sec-
tion. The fibers are aligned and distributed in the
matrix in a staustically homogeneous manner. We
assume that each of the three distinct phases is
isotropic.

The composite is subjected to traction boundary
conditions and to a uniform change in tempera-
ture. We wish to find the stress distribution in the
fiber (f). coating (g) and in the matrix (m) which
surrounds the periphery of the coated fiber. Also,
we find the overall effective properties of the
system. The problem is linear and therefore solved
as a superposition of the following loading cases:
Case 1 - Transverse hydrostatic stress, Fig. 2a.
Case 2 - Transverse shear stress, Fig. 2b.

Case 3 - Transverse normal stress, Fig. 2c.

v e
(c) (d)
QIR &

lolfoNcRoNoNoX
(@) (f

Fig. 2. Mechanmical and thermal loading configurauons.

Case 4 - Axial normal stress, Fig. 2d.
Case S - Longitudinal shear stress, Fig. 2e.
Case 6 - Uniform change in temperature, Fig. 2f.
The solution of Case 3 can be obtained as a
superposition of Cases 1 and 2. The implementa-
tion of the Mori-Tanaka theory calls for the
solution of auxiliary problems in which a single
coated fiber is bonded as an inclusion to an in-
finite medium which is subjected. in tumn. to the
six loading cases listed above. The informauon
needed in Cases 1, 4, and 6 can be obtained by
solving the auxiliary problem shown in Fig. 3.
Cases 2 and S call for solution of two additionai
auxiliary problems described in Fig. 4.

4.2. Auxiliarv problems
(i) Cases /, 4, and 6

Let a denote the outer radius of the fiber. and
b the outer radius of the coating. In what follows,
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Fig. 3. Auxiliary probiem for Cases 1, 4, and 6.

the cylindrical coordinate directions are r, 8, and
z; when they appear with the respective stress or
strain components they are always written as sub-
scripts, whereas the phase designation symbol 7 is
always written as a superscript. The boundary
conditions on the surface S’ which surrounds the
matrix with the single coated fiber are, Fig. 3:

°u|r--n‘°o "ul:-gl"Po

, 34
oyyl’-‘w-oo o(s )-00' ( )

A simple solution of the above boundary value
problem, valid away from the boundaries z = +/,
can be derived from the following axisymmetric
displacement field:

ul=A_r+B_/r

0
Uy =52,

ul = Ar

(35)
ul=A;r+ B/r

teetal / Comp

where r=0 is the fiber axis, and u,, with the
superscript r=f, g, m, are the radial displace-
ments in the respective phases: u. denotes the
axial displacements in the : direction. €, 1s a
uniform strain field to be determined together
with the constants A4,, B.. The third boundary
condition in (34) cannot be satisfied pointwise by
the present soluuon. Instead, we demand that the
average stress d,,(+/{) be equal to p,. This 1s a
generalized plane strain problem in which the
stresses do not depend on the z coordinate, hence

0:.‘ =Do- (36)

In addition, the solution must satisfy the fol-
lowing five equations: four equations of continu-
ity of radial stresses and displacements at the two
interfaces, and the condition that 6™ =¢% at r —
2. It can be readily verified that the displacement
field (35) causes uniform o,, stresses in each phase,
s0 (36) is readily implemented.

Define now the stress invariant ot

o1 =0, +0,, =0, + 0y, (37)

where all stresses denote phase a* “rages and let o
stand for the average longitudin. _ stress o,,. The
solution of the auxiliary problem can now be
written in the form

o = WiLpo + Wirot + wiby
of = W{ po+ Wirol +wibp. (38)

where, for example. W, denotes the average stress
0% due to a unit longitudinal stress p, and o is
given by 03 =20% w; and w_ define, respec-
tively, the average stresses o and o, due to a unit
temperature change.

We note that equation (38) is a special case of
the general equation (14) where the coefficients
must be found from the solution of the auxiliary
problem. These components of the tensors W, and
w, will be used in the implementation of the
‘viori-Tanaka method in the sequel.

(i) Loading Case 2

The solution of this problem depends on the
coordinate 8, but it can be obtained from an
existing solution to a similar problem found by
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Christensen and Lo (1979). The corresponding
displacement field is

ul = (bo°/4m).a|(m‘ ”(%)3 +d‘(%)}

xcos28, O0gr<ga (39)
u:’(bd°/4ﬂ.{)(al(n!+3)(%)3-‘11(%)] sin 24
) (40)
ot o)t 3(5) i 5)
ces(ng+ 1(2) +0a( )]
Xcos20, a<rsb (41)
u$=(b°°/4#.)[“2("'+3)(5)3"’2(7;')

X sin 28 (42)

ul = (bo%/4p,,)

<[]+ 03] o ]

xcos28, bgr< o (43)

ul = (b00/4“m)[—2(%) = (= 1)“3(%)
+c,(%)3] sin 20 (44)

ui:)_o‘ (45)

where a and b denote the inner and outer radii of
the coating, a,, b,, ¢,, d, are unknown constants,
u, are phase shear moduli, and

7,=3-4, (46)

where », denote Poisson’s ratio.

The interface conditions to be satisfied are the
continuity requirements for the stresses o,,, 0,4
and displacements u,, u, at interfaces r = a and
r=b. These yield eight equations for the con-

stants. It can be readily verified that the displace-
ment field (40) to (46) results in vanishing overall
o,. stress

o.=0 (47)
and fulfills

axxlr-w=°0’ oy_ylr-:cs—oO' (48)

We now write the solution as

=~ Wio,. r=f.g, (49)

r r r
Ox ™ WTSGO ’ ayv

where now the subscript TS simply refers to trans-
verse shear, and in the last equation o,. g;, de-
note phase averages.

(iii) Loading Case S
It can be verified that the displacement field

ul=Ar sin 8

s B\ .

ul = (A.H- T) sin §
(50)

B,\ .

u; = (A,,,r+ _r_) sin 4

u;=u; =0 r=f g m,

satisfies the Navier equations for displacements,

which in the present case turns out to be a Laplace

equation. The five constants, A4, A4,. A,. B;, B,

are again obtained from continuity of the u, dis-

placement and the o,, stresses at interfaces r = a,

and r = b, as well as from the boundary condition

0,, =0, at r — co. The o,, stresses are identically

equal to zero in this case.

The solution is

o;t = Wl’_s’O, r=- fv 8. (51)
where the subscript LS denotes the longitudinal
shear loading case and o,, is again the stress
average in phase r.

4.3. Stress fields and effective properties

(i) Loading Cases 1, 4 and 6

For each of the loading cases listed in Section
4.1, we now find the stress fields in the phases and
also the overall moduli of the composite which
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can be detected under the particular loading con-
ditions. As in 4.2 (i), Cases 1, 4, and 6 can be
treated in a unified manner using the boundary
conditions (34). Specific values are obtained by
setting, in turn, two of the three loading parame-
ters gy, py. 9, equal to zero. With the coefficients
defined in (38). the average of equation (14) can
be written in the form

o= Wiol+ Wrol +wib, (52)
oL = W' + WiroT + wibo, (53)
where o7 is given by (37) and o{ stands again for

r
0,;.

We now use the relations
9;; ™ Po or=o07= 20, (54)
to find a special form of (19):

(c'W{L + c,W{L)o{f‘ + (cm +c Wk + c,W{-r)o'T“

= 0% = (cowh + cuwt) . (55)
(cm+ W8+ Wi )ol + (c,Wht + cWir)oF

'Po'("r“’{.""'gwt)oo' (56)

which can be solved for of" and of.

The method presented in 4.2(i) is now imple-
mented with the help of another solution of the
problem of single coated fiber in an infinite ma-
trix, this time under boundary conditions

m
a:xl:-tlgaL

0(S’)=6,,

axxlr-a: -o*n/z

0yy'r~@ -a{'n/z

(57)

where of and of" are solutions of (55) and (56).
The results represent the actual stresses in the
fiber, coating, and in the surrounding matrix, un-
der external loads applied in Cases 1, 4, and 6.

One can also find estimates of the effective
properties. The axial Young’'s modulus E follows
from the relation

(ll - olX/E - c{(:! + Cf’! + cd;‘;' (58)
Since §,, = p,, this can be written as

pO/E - ZC,[(";'./Er) = (U';-',/E,)] ’

r=f g m. (59)

The stresses o7, o" found by solving (55) and
(56) for 63 =0, 8, = 0 depend only on the external
load p,. The stresses o5, o{. 7 =f. g. in the other
two phases are given by (52) and (53). When these
expressions are substituted into (59). p, cancels
out and there remains one equation for the mod-
ulus E.

A similar procedure yields the effective plane
stress bulk modulus k

0
St Eell=r)ot/E,~ (rai/E,)]. (60)

where, in this case, oT, o are solutions of (55)
and (56) for p, =0, 8, =0, and o}, o] are again
given by (52).

The effective transverse and longitudinal coeffi-
cients of thermal expansion ay, a; are obtained
from

2arly= Y c, (€, + €hg) (61)
§ , r=f,g.m
a b, = Zc,(,,. (62)
Consequently,

2a18,~ T, ([(1 - )o3/E)]

-(2%,/E,)0{ + 2a,6,) (63)
apby= Y c,[(0{/E,) - (e50./E.) + a 6,]. (64)

where again o", o are solutions of (55) and (56),
but for p, =0} =0. The stresses o. of follow
from (52) and (53), where a, are the linear expan-
sion coefficients of the isotropic phases.

(i) Loading Case 2

We now use the definitions (49) to implement
the average of (14) in the form

0= Wiso; r=1(.8, (65)

where again the stresses denote average quantities.
Note that

O ™ L) (66)
to obtain
o = (cm+ cWis + W) oo (67)
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Fig. 4. Auxiliary problems for Case 2(a); and Case 5(b).

The stress field in the coated fiber now follows
if the load in Fig. 4a is redefined as

i(,0 - iox':' (68)

and if the previous solution of (39)-(45) is now
used with (68).

The effective transverse shear modulus p¢ then
follows from

1 1 1
—- + ¢y 5— Wi +c — W-
2“_‘_ mzpm !2 TS By "S)

-(c,_+c,W1'-s+c'W{s)-l, (69)

where u, are the phase shear moduli. This equa-
tion takes advantage of the fact that in the aux-
iliary problem of Fig. 4a, the shear stress o,.,., in
a coordinate system rotated by 45° about z is
equal t0 o/,.

(iii) Loading Case 6 '
Here we use definitions (51) and write the
average of (14) in the form

o, = Wiso;, r=f.g (70)

Note now that

0, =7 (1)
and find
oyT-(cm+c,W£s+c‘Wgs)glro. (72)

The stress field in the coated fiber is obtained
by redefining 7, in Fig. 4b as 7, =0 and by
using the solution of (50) with this value.

The effective longitudinal shear modulus turns
out to be

1 1 1 1
8
2“'_ Cnm— me + Coa— 2 WLS + C 2“' WLS)

(em+ eWis+cWh) ™. (73)

4.4. Numerical results

Stress distributions and effective moduli of
coated-fiber composites are illustrated for several
systems whose properties are given in Table 1. It
is noted that all of the constituents are isotropic
except for the transversely isotropic fiber in sys-
tem 2, The fiber volume fraction is 0.4 throughout.

Numerical results are presented only for trans-
verse shear loading (Case 2), transverse normal
loading (Cass 3), longitudinal shear loading (Case
S) and a uniform change in temperature of 1°C
(Case 6).

Figures 5-7 illustrate the average stresses in the
coating as a function of the angle 8, for the case
of system 4 (Table 1).

Figure 8 illustrates the stresses in the coating
and in the immediate surrounding fiber and ma-
trix for the case of uniform temperature change of
1°C, in system 4 (Table 1). The average stresses in
the fiber, coating and matrix for thermal loading
in all of the four composite systems have been .
summarized in Table 2. It should be noted here
that system 2 has a transversely isotropic fiber and
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Table 1
Stress distributions and effective moduli of coated-fiber composites

System E. Er Ga Gy ar(10741/°0) a, (10°%1/°C) ¢ (Volume fraction)
(Gpa) (Gpa) (Gpa) (Gpa)

1 Nicalon fiber 17238 17238 7178 T.78 38 3.8 0.4
Carbon coating 3445 3448 1434 1434 33 33 0.01616
LAS matrix 10343 10343 4309 4309 238 28 0.583384

2 Carbon fiber 689.5 758 1517 399 110 -1.32 04
Ytria coating 17238 17238 7183 7183 60 6.0 0.084
SiC matrix 482.65 48265 201.10 20110 4.8 43 0.516

3 Tungsten fiber 3450 3450 1350 1350 S0 50 04
Carbon coating 3448 3448 1434 1434 33 33 0.0107
Nickel matrix 2140 2140 816 816 133 133 0.5893

4 SiC fiber 4310 4310 1720 1720 486 4.86 04
Carbon coating 3448 3448 1434 1434 33 33 0.0107
Titanium aluminate

matrix 9.5 965 371 371 9.25 9.25 0.5893
Tabie 2

Uniform thermal change +1°C
Material MPa

"t a5 L 3 L %o %
(interface) (interface)
1 —-0.0968 —0.00603 0.0665 —0.0408 0.00458 -0.0410 0.0968
2 2.064 -0 -1471 —-0.0394 -0.225 -0.0302 0137
3 1.826 0.412 -1.247 0.774 0.304 0T —1.845
4 0.583 0.157 -0.399 0.200 0.126 0.201 -0479

* Top bars indicate phase stress averages

1.2 On

06

0.0

o8}

STRESS MPa
STRESS MPa

1 MPa

-1.2p=

1 I
90.0 138.0 180.0 225.0 2700 L 1 L
P 90.0 135.0 180.0 228.0 270.0

Fig. 5. Average stress distributions in the coating for transverse @
shear loading (1 MPa) versus the angle ¢ in the case of Fig. 6. Same as Fig. S, but for transverse normal loading of 1
composite system 4 (Table 1). MPa.
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Fig. 7. Same as Fig. 5, but for longitudinal shear loading of 1
MPa.

o8} Tis
@ o03f
< |
n o
7] o
w o7 N
T n
£ o0 %
»
03} jod
on
0.8 1 L 1
0.4 0.7 10 13 18

RADIAL DISTANCE/FIBER RADIUS
Fig. 8. Stress distributions in system 4 (Table 1) for the case of
uniform temperature change of 1°C.

Table 3

Comparnison of Effective Properties Predications by Mori-
Tanaka Method and Composite Cylinder Assemblage (C.C.A.)
Model

Material Mon-Tanaka C.CA.

En/Ep 1 1.255 1.249
3 1.236 1.234
4 2379 2.376
k/pm 1 1.766 1.739
3 2.158 1.996
4 3.073 2979
e/ bm 1 1.188 1.188
3 117 11n
4 1.655 1.655
ar[°C™Y} 1 0.3224x10°%  0.3222x10™*
3 0.1009%10"*  0.1008x10~*
4 0.7638x10~%  0.7637x10~*
af°C”'] 1 0.3332x10°%  0.3327x10"*
3 09071 x10°% 0.9074x10~°
4 0.5998x10~%  0.5999x%10~%

Key: E, longitudinal Young's modulus, & plane stress bulk
modulus, 4, longitudinal shear modulus, ay transverse linear
thermal expansion coefficient, and a, longitudinal linear ther-
mal expansion coefficient. h

the analysis given in 4.2(i) can be applied with the
same displacement field (35) with the proper con-
stitutive equation for the fiber.

The effective moduli and thermal expansion
coefficients of the coated fiber composites have
also been calculated using the method presented
in the paper. Due to the very small thickness of
the coating in the considered systems the effective
properties are almost equal to their counterparts
in the uncoated fiber case. Resuits for the com-
posite systems 1, 3, 4, without the coating are
exhibited in Table 3 and compared to the corre-
sponding composite cylinder assemblage results
(Hashin and Rosen, 1964) in loading situations for
which they exist.
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Addendum

We address here the question of symmetry of
the L and / tensors in equations (23) and (24). In
particular, we prove that the diagonal symmetry
of the L tensor (L, ;, = L,,,,) exists in the follow-
ing cases:

a. Multiphase composites reinforced by aniso-
tropic ellipsoidal inclusions of identical shape
and orientation.

b. Two-phase composites reinforced by aniso-
tropic ellipsoidal inclusions with aligned axis of
anisotropy. but several different shapes which
may be non-aligned.

The remaining symmetriesof L (L, ., =L . =
L, ,) can be shown to follow from the corre-
sponding symmetries of the L, and T, tensors.
and are always satisfied. Similarly, the symmetry
of the second order tensor / depends on the rela-
tions L{/),= L), and I{]’=1!]", and is again au-
tomatically satisfied.

So far, we are not in the position to make a
conclusive statement about the diagonal symmetry
of the L tensor of coated fiber composites. predic-
ted by the Mori-Tanaka theory. The outcome
depends on the structure of the 7, tensors which
are generally not available in explicit form. We
should point out, however, that recent numerical
results for the case of coated cylindncal fibers
with a circular cross-section confirm the symmetry
of the L tensor in this situation.

It is clear that similar comments can be made
about the M and m tensors given by eqns. (26)
and (27). The proofs of symmetry of L in the two
systems can be obtained as follows.

Case a.

Let (23) represents a multiphase medium with
r=0,"1,..., N, where r=0 denotes the matrix
phase. Recali that the tensor 7, for inclusions of
ellipsoidal shape is given by

T,=[1+SLs\ (L, - Ly)] ", (A1)

where S is the Eshelby tensor. Note that § de-
pends only on the elastic moduli of the matrix,
and on the aspect ratios of the ellipsoid. There-
fore, it is identical for all inclusions. Define the
tensor LY as

LY=LyS™'-L,. (A.2)

Since L,S~' is diagonally symmetric (see, for
example, Walpole, 1981), it follows that L is also
diagonally symmetric. 7, can be also written as

T={L3+L,]'[L3+L,). (A3)

Substitution of this equation into (23), and some
algebra eventually yield the following expression
for L:

L-[zc,(L,+Lg)_']—l—L°. (A8)
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which proves the diagonal symmetry of L. This
form of the Mori-Tanaka model for muitiphase
composites was noted by Norris (1989).

Case b.
Write (23) in the form

M M =1
L=Ly+ Y c,(L,—Lo)T,[col+ )M c,r,]
rm} s}
(A.5)

which for a two-phase system, with anisotropic
inclusions having aligned axis of symmetry, can be
reduced to

M M -1
L=Ly+(L,-Ly) L c,1',[c01+ Zlc,T,]
r=] s=-
(A.6)

where L, and L, denote the stiffness tensors of
the particulate and matrix phase, respectively. Re-
call that the inclusions may have different shape,
and let c¢,. r=12..., M. denote the volume
fraction of the set particles of the same shape. T,
is the partial concentration factor for that set.
After some algebra. eqn. (6) assumes the form

L=L,+ [Co[(Lp"Lo) E "rT,]_l

ra|

+(L,-Lo)“‘] . (AT

We further recall that the tensor T, can be
written as

L=[I+P(L-L,)], (A8)

such that P, is a diagonally symmetric tensor
related to the P= SL;! tensor by (Walpole, 1981):

P(LP_LO)PP-P-Pr (A9)

Substitution of (A.8) into (A.7) gives

rel

M
L=L,+ [Co[ 2o (L, - L)

_c,(Lp—Lo)P,(LP-LO)]-

-1

+(Lo-L,)"" (A.10)

which shows that L is diagonally symmetric.
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Theoretical foundations. in: C.S. Yih. ed.. Advances in
Applied Mechanics, Academic Press Inc.. New York, Vol.
21, 169-243.
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ABSTRACT

This paper presents a microme uical analysis of stress fields in coated and uncoated
fiber composites subjected to both ;... MMWMWMMWJ
unidirectional materials is based on u.2 ‘average stress in the matrix

é’
8
E

Tanaka (1973) [6). In the present work, the concept is extended to coated fibers. The -

advantage of this approach is that it permits one to introduce exact elasticity solutions of the
coated btlzrproblemmm:herha! iuchrehnmmduimfathemofmm
transversely 1sotropic phases. All possible mechnaical loadings, and a uniform temperature
change were considered. Results are given for several specific systems.

INTRODUCTION

Micromechanics analyses of te maserials are often relased to s (1957) (4]
mmzm:usmmmméﬂmammmw».w&rwmme
medium is also uniform. This result is commonly used to evaluate overall properties and
avengelocalﬁeldsmcomponwumm in terms of the phase stress and strain
concentration tensors. Unfortunatel fields in coated inclusions are g.lw not
unﬂmhememephmmnﬁmmmbeuﬁl evaluaed. fore,
m%mofmcmmeGMumofmam&fﬁcm
pro in micromechanics.

Walpole (1978) (8] was among the first to consider problems of this kind. He assumed
thata Mwunnghumeﬁeammdismbuﬂmmuhcmm:ndﬁn
(1986) [ wmwmw composites reinforced by short coated
fibers in the context of the original Mori-Tanaka method. Recently, Pagano and Tandon
(l988)[7]uﬂyudamnlndmcmdeomdﬁbumbymduhuphm
concentric cylinder model.

The present paper is concerned with evaluation of local fields and overall properties of
composites reinforced by coated fibers . The results are derived from a variant of

Benveniste's (1987) {1] reexamination of the Mori-Tanaka's method. In particular, the local
fields in a coated inclusions are approximated by those found when the coated inclusion is

embedded in an unbounded matrix medium subjected to the average marix stresses at
infinity. The advantage of this approach is that the local fields in the coating and inclusion,

! Graduate Research Assistant
2 Professor, Dept. of Civil Eng., RP.L.Troy, N. Y.
3 Professor, Tel-Aviv University, ISRAEL




and in the matrix can be evaluated by using the solution for a single coated fiber in an
infinite masrix. Specific results are found for systems reinforced by aligned coated fibers,
where the phases are isotropic or transversely isotropic elastic solids. We also consider the
possibility of plastic yielding in the unidirectional composites.
STRESS AND STRAIN FIELDS IN THREE-PHASE COMPOSITES

Consider a three-phase composite material consisting of a continuous matrix phase m. in
which there are embedded a fiber phase f, and a third phase g which represents a layer of
coating that encapsulates each fiber of the f phase. The fibers have & circular crosssecton.
The phases are assumed elastic and perfectly bonded during deformation. The composite

medium is statistically homogeneous. The thermoelastic constitutive equations of the phases
are given in the form

o =Le+18 1N
e =Mo+m86 2

where r=f, g, m; L, and M =(L,)"! are the stiffness and compliance tensors; | is the thermal
stress vector and m, is the thermal strain vector of the expansion coefficients, such that

l,=-L m )
Define the following thermomechanical loading problems

on(S) =0, N 0(S) = Oo (4)

where o, (S) is the traction at the external boundary S of a representative volume V of the
composite under consideration, n denotes the exterior normal to the surface S; o is the
applied uniform stress field; &(S) is the temperature rise a S, and @_ is a constant quantity.

The composite is subjected to boundary conditions (4). The solution for the stress field in
the phases can be expressed in the form:

o,(x) =B (x) o +b(x) 0 r=f,g m (5)

where B,(x) and b (x) are fourth and second order tensors, respectively. Their volume
averages B, and b, are usually referred to as mechanical and thermal stress conceatration

factors.

In the Mori-Tanaka method,, the stress fields in phases f and g are assumed to be equal to
the fields in a single coated fiber which is embedded in an unbounded matrix medium and
subjected to remotely applied stresses which are equal to the yet unknown average stress in
the marrix. Also & uniform temperature change is applied. ) '

Suppose that the single inclusion is surrounded by a large matrix volume V* with surface
S', Fig 1. The solutions of this dilute problem assumes the form




o,(x) =W (x)0, + w&x)6, raf,g (§)

we will solve this auxiliary problem in the next section. To determine G,,, we recall that the
overall uniform stress and the local average stress are connected by the relations

zcrcr' %, r=f gm €))
T

where c, denote the phase volume fractions, ¢r+c, +C,=1. From equations (6) into (7), oce
finds that the unknown matrix stress is equal ©©

o = [; ¢, w’l -1 [o.’ °o2;' ¢, w,] | ®

mmmmyfwwmdumnmmﬁmminmm«m
average matrix stress (8). One can then obmin the solution (5).  An entirely similar
procedure can be spplied under strain boundary conditions.

The effective thermoelastic constitutive relstions of the composite medium are defined as:

o=Le +10 )
e=Moc +mb (10)
where ©, & and 6 denote representative volume averages and L, M,1, m are ovenll
stiffness, liance, thermal stress and thermal strain tensors, respectively. Using
equations (6), (7), and (8), one can derive :
-]
Me [; °.M.W.] [; °,W:] an

[ fpen] 3]
2;' c,(Mw +m) (12)

We note here that Benveniste et al (1989) [2] has proved that the results are coasistent in
that the overall compliance tensor is the inverse of stiffness tensor. Also, we have
numerically verified thas the effective stiffness L and compliance M are sysmetric.




AUXILIARY PROBLEMS

In the evaluation of W, and w,, the composite is subjected to several traction boundary
conditions and to a uniform wemperature change. We wish to find the stress distribution in

the fiber, coating and matrix which surrounds the periphery of the coated fiber. The loading
cases are shown in Fig. 2.

Case | - Transverse hydrostatic stress
Case 2 - Transverse shear stress

Case 3 - Transverse normal stress

Case 4 - Axial normal stress
Case § - Longitudinal shear stress
Case 6 - Uniform change in temperature

Case 3 can be obtained as a superposition of cases 1 and 2. In what follows, the cylindrical

coordinates r, 6, z are used; the respective stress or strain components are always written as
subscripts, while the phase designation is always written as a supercript.

. (i) Cases 1,4,6

The solution of the above boundary value problems can be derived from the following -
admissible displacement field:

u:- At u:'- Agt+B /1
ut'- A T+BJr u: = e: (13)

where u,®, with the superscript (i)=f,g.m, are the radial displacements in the phases; u
denotes the axial displacement in the 2 direction . The constants Ap Ay, Ay, B, B, and €°
are to be determined from the conditions of continuity of displacements and tractions at the
two interfaces, and from the traction boundary conditions at infinity.

(ii) Case 2

%;%;ﬁﬂeﬁmhmmﬁeﬂof&km&mhuhfmﬁmbymmu
(1 :

3 1
u:-(bd'“uf)[.‘(ﬂ'.”I%] 4.41[-:;1 cos20 , 0<Sr<a (14)
p 3 rl
u:-(bd"ldu‘) ‘1(“'+3) %] -dI[B sin20 , 0sr<a (15)

93
r r b b
uf s(bo?/ 4;&' ) l;(’l.‘”[%’ + dz['l;] ""ﬂ%"'”l?]"%[?f] cos20 (16)




sroon ot bl

u:" -(bﬂ°/4um) {% +(nﬂl+l).3 +G,[ ]caZO (18)
|
r - P
5 —owrsml g o[ |
ula 0 (20)

whueundb&nocmeinnenndmterndiioﬁhemﬁng.u are phase shear moduli, and

N,=3-4v,;v, denotes the Poisson's ratic; a,, b;, ¢, and d|m unknown constants to
"be demned&ommemmfueeondmom.
(iii) Case S

The general displacement field of anti-plane shear is

B
ul = Ar sin® o= (A r+=1) sin®
m Bm . L 4 L 4
u, = (An”',-) sin@ u=u= 0 (21

The five constants Ap, A, A, B, B, are obuined from continuity of the u, displacement
and the 0, stress at the interfaces, as well ds from the boundary condition on-o"nr--.

NUMERICAL RESULTS

The stress distributions in coated and uncoated composites are illustrated for several
The fiber volume fraction is assumed to be 0.4 .

Table i thows the thermal stresses in the fiber, coating and matrix under uniform
temperature change of 1°C. Since the volume fraction of the coating is very small ( less than
1%), the results for costed fiber composites are not much different from those for the
uncomd fiber composites. However, very different stress magnitudes are found in different

Fim3mmmmedmmsd:mbunonmthe radial direction for the system
consisting of SiC fiber, carbon coating and Ti,Al matrix. The coating thickness is 1 pm;
fiber radius is 75 um. The fiber stresses are uniform in this case. Table 2 presents the

average thermal stress caused by cooling from the processing temperature to the room
temperature, for 4 different uncoated systems. Figures 4 and 5 show yield stress and the




effective stress v3 temperature during cooling in & system consisting of an AL, fiber, in a
TiyAl or Ni;Al matrix. These resalts indicate that yielding may take place during cooling.
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Table 2 Thermal stresses after cooling 100° C
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The present paper is concerned with coated-fiber composites in which the fibers possess
cylindnical orthotropy and may have an arbitrary orientation distribution. A micromechanics
model is developed which predicts the effective thermal conductivity and estimates the local
fields of such composites which may be subjected to uniform heat fluxes on its boundary. The

micromechanics model is based on the Mori-Tanaka mean-field concept [ T. Mori and K.
Tanaka, Acta Metall. 21, 571 (1973) ] and provides explicit expressions for the effective
conductivity of the considered composite aggregate which is highly complicated. The analysis
shows that special care is needed in formulating an effective theory of composites with

constituents possessing curvilinear anisotropy.

L. INTRODUCTION

The subject of the effective thermal conductivity of
composites is one of the classical problems in heterogeneous
media which has recently drawn renewed interest due to the
increasing importance of high-temperature systems. For an
extensive list of references in the subject, the reader is re-
ferred to the works of Hatta and Taya,'? Miloh and Beave-
niste,” and Benveniste and Miloh.*

Highly complicated systems of coated-fiber composites
in which the fiber may have cylindrical orthotropy are now
in use, and there is a need for rational micromechanics mod-
els which predict the effective thermal conductivity and also
provide information on the local fields. Systems of such coat-
ed fibers which are aligned have recently been analyzed by
the authors in the context of the mechanical properties.’

The fiber arrangement in a composite aggregate can,
however, have a certain orientation distribution which may
be due to processing. The present paper presents a microme-
chanics model of a composite containing coated fibers which
are nonaligned and possess cylindrical orthotropy. The first
section of the paper presents a general framework for the
determination of the effective thermal conductivity of such
composites. It is specially seen tha. particular care is needed
in dealing with constituents which possess curvilinear ani-
sotropy and also have an orientation distribution. The sec-
ond section formulates the employed micromechanics mod-
el which is based on the mean-field concept of Mori and
Tanaka.® The analysis given here is in the spirit of the appli-
cation of this theory to heat-conduction problems by Ben-
veniste.” The treatment in both sections is general and appli-
cable, in principle, to short-fiber composites. The last section
illustrates the method for the case of cylindrical coated fibers
with a circular cross section. The effective thermal conduc-
tivity is given for some chosen examples of fiber distribution,
and an example for the local fields is also presented.
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il. GENERAL THEORY

A. Curvilineariy anisotropic constituents
Consider a composite reinforced with coated carbon fi-
bers which are transversely isotropic or cylindrically ortho-
tropic and which may be aligned or have a certain orienta-
tion distribution. In order to evaluate the effective thermal
conductivity and temperature fields in various systems of
this kind which may be subjected to certain heat fluxes on
their boundaries, we develop in this paper a micromechani-
cal analysis of coated-fiber composites in which the fiber
may be at most cylindrically orthotropic and the coating
and/or matrix transversely isotropic.
The phase constitutive relations for a cylindrically orth-
otropic fiber is given by
q. k, 0 O}({H,
g,}=|0 k, O|SH,?}, n
4 0 0 kJ|[AH,

where the vector q is the heat-flux vector expressed in a cy-
lindrical coordinate system (r,6,z) (see Fig. 1). H is the
intensity, defined as

1 i@’
or
1 96
H-—VO--{T ;}, (2)
%
. 9z

where 8 is the temperature, and %,, k,, and k,, are the con-
ductivities in the 7, ¢, and z directions, respectively. It is seen
that three constants of conductivity describe this kind of
cylindrical orthotropy which is characterized by the fact
that properties in tangential, radial, and axial directions are
different from each other; in other words, the material is
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F1G. 1. A cylindncally orthotropic fiber.

orthotropic in a Cartesian axis located at a generic point
within the fiber with the three axes pointing in the axial,
tangential, and radial directions, respectively. If k, > k,, the
material is radially orthotropic, and if k, < k,, it is called
circumferentially orthotropic. In the special case of trans-
verse isotropy, we have X, = k,, and for isotropic solids, of
course k, = k, = k, prevails.

In general, the determination of the effective conductiv-
ity of a system containing phases with curvilinear anisotropy
requires special attention since from a fixed Cartesian sys-
tem point of view such a phase is like an inhomogeneous
medium. We now proceed to establish a framework of the
determination of the effective conductivity of such systems.

Let the composite be subjected on its outside boundary S
to homogeneous temperature or flux boundary conditions,
defined as

0(S) = —~Hyx, ¢, =¢qn, &)

where x denotes the components of a fixed Cartesian system
in the composite, a is the outside normal to S, and H, and g,
are constant intensity and heat flux vectors. In this paper
when two quantities A and B are vectors, AB will denote the
dot product 4, B,; when A is a second-order tensorand Bisa
vector, then AB will mean 4, B,. As it is known, the bound-
ary conditions (3) are usefyl in the determination of the
effective behavior of the composite. We will now show that
under such boundary conditions, and as far as the computa-
tion of the effective properties are concerned, it is useful to
represent a phase with curvilinear anisotropy by an effective
rectilinearly anisotropic phase. To this end, suppose that the
heat flux and intensity fields in the composite under (3),
and (3), are known in a current curvilinear system § [Fig.
2(a)) and are denoted by primed quantities q’'(§) and
H'(}).

Similarly, let the conductivity tensor K’ and resistivity
tensor R’ = (K’) ~' in such a system be defined by

@) =K H;(§), H;(§) =R;q(§). (4)
where the subscript s denotes a certain phase.

Since in this paper we will be eventually coneemed'vmh
cylindrically orthotropic fibers with s certain orientation
distribution, it is useful to introduce an additional auxiliary
Cartesian coordinate system (v) whose 7, axis coincides

2879 J. Agpi. Phys.. Voi. 87, No. 8, 15 March 1990
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FIG. 2. (2) Local coordinstes in & curvilinearly anisotropic system (§) and
a Cartesian systam () fined in 2 phase. (b) The orientation of s fiber in a
fixed Cartesian system (x).

with the axis of symmetry of the fiber (Fig. 2). More gener-
ally, this system can be thought of as a local Cartesian system
which is fixed in a certain phase. Field quantities in this Car-
tesian system will be denoted by a tilde and the transforma-
tion between the current curvilinear and Cartesian compo-
nents of the fields denoted by a prime and a tilde,

respectively, and are desctibed by

LD =Qg@), B, (w)=QH;(®), (%
where Q is the orthogonal transformstion matrix between
the % and { systems and defined as

"=Q¢ (6)

Note that Q is usually a function of §; for example, if the
transformation is between the cylindrical and Cartesian sys-
tem, Q is a function of the angle ¢.

The constitutive laws in the § system can be now de-
scribed by

with R; = (K;) ~'. Equations ($) and (7) yield
L =0QK;Q'H, H, =QRQ-'%, (8)

at any point v in phase 5. As mentioned above Q is usually a
function of § (or w). For the sake of simplicity in notation,
however, these quantities will be denoted without the argu-
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ment v in the sequel.
Averaging (8) over the volume of the phases yields

& =—f QK:Q-'H, (mdV,
v, Jv, ‘ 9)

-~

i, =lf QR; Q- ', (V..
v, Jv

Let now the local flux and intensity fields in the composite
aggregate be related to the applied uniform fields through
certain influence functions A, (n), B, (), given by

H(n) = A‘(n)Ho. q,(n) = B, ()&, (10)

under (3), and (3),, respectively, where the overall intensi-
ty and flux vectors have also been referred to the 7 fiame
relative to phase 5. Similar relations can be written for aver-
age quantmes

=A,H,, & =B.4. (1
In this paper we will denote local fields with an argu-
ment and quantities without an argument wiil refer to aver-
ages. The tensors A, and B, in (11) are called concentration
factors.
Next let us write the average flux and intensity under
(3), and (3),, respectively:

g =(VLI Qx;Q-'K,(n)dV,)ﬁo. (12)

A, = (5[ oriQ-'B.mav.)%
v, Jv.
Solving for H, and §, in (11), and substituting in (12) and
(13), respectively, yields
i =KH, H=R4, (14)
where the effective properties K, and R, have been defined as

(13)

K = (—;- [ axie- 'x,m)dV.) A (15)
R = (.i‘,_ f QR:Q- 'i,(mdv,) B, (16)

Note that in view of their definition in (15) and (16), K,
and R, are second-order tensors. Very much like the overail
effective behavior of the composite aggregate, those effective
tensors depend on the nature of the influence functions
A, () and B, (). Since these functions are approximated
differently in different micromechanics models, K, and R,
may vary from model to model. Funbermore.toquahfya
effective properties, the reciprocity relation K, = R, ' needs
1o be proved in the context of the used theory. Such a reci-
procity relation is also usually necessary to prove that the
overall conductivity tensor and resistivity tensor as predict-
ed by the model are the inverse of each other.

With the quantities K, and R, defined in (15) and (16),
a proper framework can be now formulated for the computa-
tion of the effective conductivity and resistivity tensors.

8. Coated fibers with curvilinearty anisotropic ﬁbcr and

given orientation and distribution

Let us first start with a proper definition of average
quantities in a composite in which the fibers may assume

2880 J. Appl. Phys., Vol. 87, No. 6, 15 March 1980

some given orientation distribution. Recall that a Cartesian
frame x and an auxiliary one ), whose 7, axis coincides with
the fiber axis, have already previously been defined. The
transformation between the x and w systems is described as

x =Dn, : (17
with D being given by [see Fig. 2(b)]:

cosOcos® -—sind sinOcosP
D=|cos@sin® cosd sin@sin¢). (18)
—sin @ 0 cos ©

The framework presented in this section is valid for short
spheroidal coated fibers with an axis of symmetry. Imple-
mentation of the method in the last section will be given for
the case of long cylindrical fibers with circular cross sec-
tions.

Consider now a quantity ¥, (©, ®), be it scalar, vector,
or tensor, which has already been averaged over the fiber
core or coating of a single fiber, and which depends on the
specific orientation (©, ®) of that fiber. The average of this
quantity over all possible fiber orientations will be now
sought. To this end, define an orientation distribution by the
function of p(©, ®) which represents the number of fibers
intersecting a unit area of the unit sphere in Fig. 2(b). The
average of the quantity ¥, (©, ®) over all possible fiber ori-
entations is therefore given by

§2313*y (©,0)p(0,®)sin O dO dd

$3337(©,9)sin © dO dP
(19)

(¢4,(0,9)) =

Consider next the boundary condition (3),, under which

the average intensity H is given by
H=H,,

with

(20)

H=c H.+ T ¢(H(00),

s=fg

where all the intensity fields are referred now to the fixed

21)

coordinate system. In (21), H denotes the overall intensity,

H,, is the average intensity in the matrix, and H, (©,®) are
the average intensities in the fiber and coating of a costed
fiber which has an orientation (©,®). Using the proper
transformation between the H, and H vectors, and invoking
(11), and (20) in (21) provides

c.H, = (l - 2‘7 c,(DK,D"))Ho. (22)

swm g

Next define an overall conductivity tensor K referred to the
fixed coordinate system x:

q=KH=KH,. (23)
Writing (23) in the form
KHo =K H, + T ca), (24)

1= /g

and using proper transformation between coordinate sys-
tems together with (14), and (22) provides, after some
manipulations,
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K=K.+ 3 c((DK,D"')(DA;D™"))

1=/fg

-K. 3 c(DA,D-Y), .
=78
where in the above development the matrix is assumed to be
homogeneous and rectilinearly anisotropic.
Under boundary conditions (3),, using

(25)

I=Cnlm + 3 6,(Q(0.9)) =gq,, (26)

s=/fg
and (11), and (14),, yields the following equation for the
effective resistivity tensor R:

R=R.+ ¥ ¢, ((DRD-')(DB,D~")

smfg

-R. 3 c,(DB,D""),
s=/g

which is counterpart to (25).

@n

Iil. THE MICROMECHANICS MODEL

We employ here the Mori-Tanaka mean-field theory to
determine the effective thermal conductivity of the above-
described composite systems. The essential assumption of
this theory consists in estimating the concentration factors
in (11) by those obtained in an auxiliary configuration of
one fiber in an infinite matrix subjected at infinity to

S =H,.x, or ¢,(5)=gq,n (28)

where H,, and q,, are the average intensity and the flux
vectors in the matrix to be determined.

Consider first the boundary conditions (3), and let the
intensity in the fiber core and surrounding coating of a single
coated fiber embedded in an infinite matrix subjected to
(28), be given by

Hw =T,mH, =T,(q)D-'H,.. (29)
Use of (29) and (21) provides
- -1
Ho=(cal+ $ ¢ (®TD-H) He. (30)
s fg

Substitution of (30) back in (29) and recalling the definition
of A, in (11) gives

K,(n)=f,(n)o-'(c.l+ 2, (nri‘,n-'))-'n.
1= g
(31

Finally, employing (31) in (25) provides the following
expression for K:

K=K, +( S ¢ ((DE,D-")(DT,D-")

s fg

K. 3 c,(Dri‘,n-'>)

= fg

x(eal+ 3 eotD-h) " (32)

s=mfg
Similarly, under boundary conditions (3),, defining the W,
tensor, counterpart to T, in (29), as

@ (n) =W, (n)&.., (33)

2081 J. Appi. Phys., Vol. 87, No. 8, 15 March 1990

—

yields equations for §,, and B,, and the resistivity tensor R
counterpart to (30), (31), and (32):

. Wl+ T eo%D ) w.

s=fg

(34)

- - - -1
B,(vl)=W,('l|)D"(c,..l+ s <Dw,n-*>) D-,
s=/g
(35)

R=R, +( S ¢, ((DR,D~')(DW,D-"))

s=fg

-R, 3 ¢(DW,D- '))

s=fg

- -1

x(c,.l+ 2 c,(DW,D")) . (36)
s=/g

Two consistency properties need now to be proved: first,

that the effective phase properties as predicted by the model

in conjunction with (15), (16), (31), and (35) satisfy
K =R (3N

and second, that the predicted effective properties (32) and
(36) satisfy a similar relation:

K=R"\ (38)

Let us first prove (37). Substitution of (31) into (15)
and (35) into (16) yields

K- (% [ ex:e- 'T.undv,) T, (39)
R =(+[ ore-Wmar)¥ @
 } v‘

Consider now (29) and transform it consecutively to
the following equivalent forms:

H,(y) =T,(q)H,, QH:=T ()R.q..
QR;q¢ =T,(R.&.. QR;Q'g, =T, (MR, §..
(41)
4 =QK.Q 'T,(WR.q.,
which, when compared with (33), implies that
W, (1) =QK;Q" 'T,(m)R... (42)

Substitution of (42) into (40) provides, after some manipu-
lation,

&=t (5] oK~ Toar,)”

whose comparison with (39) shows that (37) is fulfilled.
Let us now prove that K and R as given by (32) and
(36) fuifill (38). To this end, write first (36) as

ll(c...l + 3 c(DW,D- '>)

127g

(43)

=(n,,c.. +3 n_c,(nw,n-'))

t=/g
+( T a(®RD-H@%,D")
1=/fg
-R. ¥ c,(DW,D-')). (44)
twfg
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Next note that integrating (42) over ¥, and comparing with
(39) provides

W, =KTR.,. (45)
Substitute now (45) in (44), and obtain, after some manipu-
lations.

R(c,,l(,,, + 3 c,((Dl"i,D")(DT,D-'»)
2

s=f
=(ca1+ T a(@TDY), (46)
sm= /8
where we have used the fact that

(DK, T,D-'DR,D"') = (DK, T,D-")R,,. Noting finally
that (32) can be written as

K(c,,l+ h) c,(D’i’,D"))
s=fg
=(c,,x_ + 3 c,((DE,D-')(DT,D-'))), (47)
s=fg

and comparing (46) and (47) shows that (38) is fulfilled.

The local fields in a coated fiber and the immediate sur-
rounding matrix can be obtained in the framework of the
present model, by solving the auxiliary problem of a single
coated fiber taken at an orientation (©,9) and embedded in
an infinite matrix, and subjecting it at infinity to boundary
conditions {28), . The implementation of the theory present-
ed herein for the case of cylindrical coated fibers with circu-
lar cross section will be presented in the next section.

IV. APPLICATION: COMPOSITES WITH COATED
FIBERS OF CYLINDRICAL SHAPE WITH A CIRCULAR
CROSS SECTION

Let us now consider long coated fibers in which the fiber
core is cylindrically orthotropic, the coating is transversely
isotropic, and the matrix is isotropic. The conductivities of
the phases are, respectively, denoted by k! /°, k .\, k '/,
k®; (k)% k'™. We will be concerned in this section with
boundary conditions of type (3), only and chose to imple-
ment Eq. (32). The temperature field 6 in the coated fiber
and surrounding matrix can be obtained by solving the prob-
lem of a single coated fiber in an infinite matrix and subject-
ing it to (28),, with H,, given in (30).

_The solution of the auxiliary problem leading to the ten-
sor T, is given in the Appendix. It turns out that

(dadt-t 0 0
i‘,= 0 d(/’d‘_l ’
\ o 0 1

(48)

(d® 0 0
f‘ =lo0o 4w ,
\0 0 1

where A is givenby A = (k$/°/k¢)""? andd */’ withd
are constants defined as

4= 4k ™k g -4 (49)
(k™ + k@) Ak + k@) — (a/b) (k'™ — k@) Ak = k@)’
4 = 2k ‘™ (AkL) + k'®) ’ (50)
(k™ + k@) Ak + k@) — (a/b%) (k™ — k@) (Ak () — k'®)
and a and b denote the inner and outer radii of the coating. 'whm
The effective conductivity K, of the cylindrically ortho- - (g1 w -1
tropic fiber is obtained from (15) with A, being defined in A=[en+ T+ D+ +)) 56
(31), resulting in
o kALK
k) = deo——— (55)

K - (% f QK:Q- "i‘,(q)dl’,) i, (s1)
] y'

where an expression for the T (v) tensor depending on the
position within the fiber is again to be found in the Appen-
dix. After performing the integration in (51), K, resultsasa
diagonal matrix with

kﬁ”l + k)
“a— ®n=k

(52)

(i/)n = (i/)u =

so that Eq. (32) can readily be implemented.
In the case of completely random distribution, the ex-
plicit form of (32) is given as

K, =K, =K,
=kt +C,[§(k(l) - k(n))d(l)al-l
YR =k A+ [§k

..k"”)d("+§(k:ﬂ-k("))]‘v (53)
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For cosine-type distribution, p = p, cos ©, the effective
conductivities in transverse and axial direction have the
form

K=Ky =k +¢ ikt —k™d e~
+ik{ k™) ]B
+¢, [“k(l)_k(m)dm
+ (k" — k™) ]B,
Ky =k™ ¢ [k —k™)d Nig*~?
+{(k} =k ]C

+C. [“k(‘, - k(n))d(ﬂ +i(k§') —k“'")]c,
(57

(56)

where
B={c. +c,(Jd' '+ +¢,(d'®+))] ", (58)
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C=[cn+c(d V" +P +c,(JdO+]". (59)

For binary systems with uncoated cylindrical fibers with cir-
cular cross section and isotropic constituents, Eqs. (53),
(56), and (57) reduce to Egs. (25),(30), (31), (35), and
(36) of Hatta and Taya.'

Just as an illustration, numerical results are given for the
following  chosen  parameters: k!/'/k‘™ =10,
ki 7kt™ =20, k{7k™ =20, ki =k 87k ™
=10, k#/k'™ =15, and b/a = 1.1. Figure 3 illustrates
the effective thermal conductivities of completely random
and cosine-type distribution of fibers in which
p(OV¥) =p, cos © in Eq. (19). In Fig. 4 we consider the
case of unidirectionally reinforced composite with an ap-
plied intensity transverse to the fiber; the figure illustrates
the thermal intensity distribution in the fiber, coating, and
matrix along the angles ¢ = 0" and 90".
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APPENDIX

We derive in this Appendix the temperature flux and
intensity fields in a coated cylindrical fiber with a circular
cross section which is embedded in an infinite matrix and
subjected at infinity to a constant intensity [see Fig. A1(a)].
The core of the fiber is cylindrically orthotropic and de-
scribed by Eq. (1), the coating is transversely isotropic, and
the matrix is isotropic.

In accordance to the notation used in the paper, a Carte-
sian system v is centered at the fiber with the %, axis coincid-
ing with its axis of symmetry, and the intensity field at infin-
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ity is described by (Hy ). Due to the axisymmetric nature of

the described boundary-value problem, it is sufficient to con-
sider only_ an external intensity in the form
[(Hy),,0,(Hy); )- The solution due to (H, ), is trivial and
consists in

H = [00,(Hs);], 4 = [00k"(H,) ], (AD)
so that we will solve here the problem due to a transverse
intensity (H,), [see Fig. Al1(b)].

The described problem is therefore two dimensional
with the heat flux in each phase being given by

AL k» 0 1?, n
G-l &l 2

where K/ #k ./ in this case, k¥ =k P %k in the
coating, and k(™ =k (™ =k!™ in the matrix. Under
steady-state conditions,

Vq=0 (A3)
prevails. Using the expressions given for H in (2) and writ-
ing (A2) in a cylindrical coordinate system provides

ko —";9:" sk (L) Evkp (F) L =0
r

r r rt/) o4
(A4)
Using separation of variables,
o(:) =F(’)(P)G(')(¢). (AS)

yields the following solutions for the temperature field in
each phase:
0’ =d'’r*sin g,

9@ = [d ®p 4 L:)] sin &, (A6)

9("" = [d(n)'+ ﬂ] Sin ¢’
r
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where d '’ and e'” are five constants to be determined from
the interface conditions and boundary conditions at infinity.
Continuity of the temperature field and radial heat flux at
material interfaces demand

0 ' =0'%, atr=a,
80 =6, at r=y,
ae ae s
k¢ =k® , at r=a, (A7)
ar ar
(T4 (m)
k® 33 =k""’aea , at r=b,
r r

where a and b denote the radius of the fiber core and radius
of the coating-matrix interface, respectively. The condition
at infinity, on the other hand, requires

d'™ = —H{" (A8)

Solution of (A7) and (A8) provides the constants of inter-
est, and the expression for the T'*’ tensor therefore results as
given in (48).
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STRESS FIELDS IN COMPOSITES REINFORCED BY COATED CYLINDRICALLY

ORTHOTROPIC FIBERS
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Local fields and effective thermoelastic properties are denived for coated fiber composites with cylindrically orthotropic
fibers and transversely isotropic coating and matrix phases. Thermomechanical loading situations are considered in which a
uniform stress and s uniform temperature change are applied to the boundary of the composite aggregate. A micromechanical
model, based on the Mori and Tanaka’s concept of average stress in the matrix, is used t0 account for phase interaction. It is
found that a special treatment is needed in formulation of effective properties of composites reinforced by constituents which
are curvilinearly anisotropic. Results are preseated for a pitch precursor carbon fiber, carbon coating and titanium aluminate

matrix system.

1. Introduction

The present paper is a continuation of our
carlier study of stress fields in composites rein-
forced by coated inclusions (Benveniste et al,
1989), which will be referred to as (I) in the
sequel. In that work we evaluated the overall
properties of such composites, and examined in
detail the local fields in fibrous composites with
‘sotropic phases. A general overall uniform stress
state and a uniform temperature change repre-
sented the external loads. The results are useful in
applications to many actual systems, but not in
situations where the phases are anisotropic. A
particular example is a composite reinforced by
carbon fibers which are transversely isotropic or
cylindrically orthotropic, and also a system which
contains carbon-coated fibers. To evaluate the lo-
cal fields and overall properties in various systems
of this kind, we develop herein a micromechanical
analysis of coated fiber composites in which the
fiber may be at most cylindricaily orthotropic, and
the coating and/or matrix transversely isotropic.

* Permanent address: Dopartment of Solid Moechanics,
Materials and Structures, Facuity of Enginesring, Tel-Aviv
University, Ramat-Aviv 69978, Isrsal.

0167-6636/90/33.50 © 1990 - Elssvier Science Publishers B.V.

In addition to the earlier studisg of coated fiber
composites described in (I), we mention here
the work of Avery and Herakovich (1986) who
considered a single composite cylinder, with a
cylindrically orthotropic fiber, under uniform
thermal change. Pagano and Tandon (1988) treat
a thermomechanically loaded system reinforced by
randomly oriented short coated fibers in which the
constituents may be trapsversely isotropic. Mikata
and Taya (1985a, 1986) used the Boussinesq-Sa-
dowsky stress functions to find stress fields in
coated ellipsoidal inclusion in an infinite matrix
under transverse dilatational, axial and thermal
loadings. In another paper (Mikata and Taya,
1985b), they considered the problem of four con-
centric cylinders with transversely isotropic phases
as a model of a composite reinforced by aligned
coated fibers; overall stresses were limited to uni-
form temperature change and to axisymmetric
mechanical loading.

In contrast, the present results are not limited
to special loading conditions. The applied load

may consist of any uniform overall state of stress,

and a uniform change in temperature. As in (I),
the micromechanical model employed here is based
on the Mori-Tanaka approximation. The stresses
in the fiber and coating are derived from the
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solution of an auxiliary dilute problem in which
the coated fiber is embedded in a large volume of
matrix. The interaction between fibers is accounted
for in an approximate way: The actual stress in
the matrix is replaced by its average value o,
which is applied together with the prescribed uni-
form thermal change at the remote boundaries of
the matnx. The magnitude of g, is obtained from
the Mor-Tanaka model described in the sequel.
The advantage of this approach is that the a,
proximation affects only the boundary conditiors
of the modified dilute problem, but the problem
itself can be solved exactly for the stress field in
the fiber and coating, in the adjacent volume of
the matrix, and at the respective interfaces.

The paper starts with the solution of several
auxiliary dilute problems which focus on a single
coated fiber while certain uniform overall stress
states, and a uniform temperature change are ap-
plied to the matrix at infinity. These solutions
show that even under uniform overall states, the
local fields in the phases are not uniform. The
results are found in cylindrical coordinates associ-
ated with the fiber axis, whereas the evaluation of
overall properties must be based on phase stress
averages in Cartesian coordinates. In the cylin-
dricaily orthotropic fiber, the phase properties are
not uniform in the Cartesian system, and the
transformation of the stress fields and phase prop-
erties requires special attention. This opens the
way for implementation of the Mori-Tanaka
scheme, and for a proof of its consistency. Finally,
examples of computed overall properties and local
stress fields are presented for a pitch precursor
carbon fiber, carbon coating and titanium
aluminide matrix system which is of interest in
applications.

2 Auxilisry dilute problems
2.1. Phase properties

We now proceed to find solutions to the dilute
problems in which the coated fiber is embedded in
a large volume of matrix subjected to certain
remotely applied tractions derived from uniform
stress states. [nvarisbly, the analysis will be per-

formed in cylindrical coordinates, -, ¢, z. where
the z direction coincides with the fiber axis.

The phase constitutive equations employed in
the analysis can be summarized as follows. The
cylindrically orthotropic fiber is a particular ex-
ample of a cylindrically anisotropic solid with the
constitutive equation written as:

o\ [C, ¢, ¢, 0 0o o]
o, C Co C. O 0 O
o|_[G G G 0 0 o0
0 o 0 0 G, 0 0
o 0o 0 o0 0 G, 0
o) LO 0 0 0 o0 G,]
¢, —alb,
(.—C‘OO
¢ ,—a
| b )
2¢,,
2¢,,
\  2¢,

where C,, G,, and G,, are the stiffness coeffi-
cients, a, are linear coefficients of thermal expan-
sion, and &, is the prescribed change in tempera-
ture. Nine stiffness coefficients and three thermal
expansion coefficients describe this kind of ani-
sotropy. Cylindrical orthotropy is characterized by
the fact that the properties in the tangential, radial
and axial directions are distinct; in other words,
the material is orthotropic in a Cartesian system
which is located at any point within the fiber, with
the three axes pointing in the axial, tangential and
radial direction respectively. If C,, > C,,, then the
material is called radially orthotropic, and if C,, <
Cee it is called circumferentially orthotropic.

In the special case of transversely isotropic
solids, which may represent the coating and the
matrix, as well as some fibers, the nine indepen-
dent constants in (1) are related by the connec-
tions

Cor = Cous
G,e=G,,

G =C:

C, - G =2G,. @
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Fig. 1. The auxiliary problem for axisymmetric loading

This reduces the number of independent constants
to five. It is often convenient to represent the
stiffness coefficients of a transversely isotropic
solid by Hill's (1964) moduli &, /, m, n, and p,
as:

Cr=k+m,
Cll-"'

Co=k-m,
G, =p,

G =1

Ge=m.

(3)

2.2. Axisymmetric deformation

We refer 1o Fig. 1 for definition of the geome-
try of the coated fiber assecnblage, and of the
applied loads. The cylindrical coordinates are de-
noted by the symbols 7, ¢, z; they appear as
subscripts when used with the respective stress or
strain components. The phase designation symbol
s=f, g, m for fiber, coating and matrix, is always

written as a superscript. The boundary conditions
on the surface which surrounds the large matrix
volume are:

at r —
atz—= +L,

g, =0
/S )

It should be emphasized here that in this auxiliary
problem and in those which will follow the stresses
at infinity are denoted by &,. The stress fields in
the composite will be derived from the solution of
the same auxiliary problems but this time. accord-
ing to the main assumption of Mori-Tanaka's
method, the average stress in the matnix o, will
replace a.

A general solution to the above boundary value
problem, valid away from the fiber ends z = + L,
can be derived by substituting (1) into the equa-
tions of equilibrium with the bouncary condition
that the hoop displacement u, is zero. Also. the
stresses and strains must be independent of ¢.
Cohen and Hyer (1934) found such a general form
of the axisymmetric displacement field, for a
cross-ply composite tube. This field can be utilized
in the present situation:

8(S’) =8, (4)

ul=A'"r" + H%r + Hyré,
ul=ASr+ B8/r (s)
u; = A%r + B=/r

u=dr s=f g m

where r=0 is the fiber axis z, and u!”, u!®
denote the radial and axial displacements in the
phases s. 4°, B’, and the uniform stran ¢° are
unknown constants which follow from the
boundary conditions (4) and from the usual dis-
placement and traction coatinuity conditions at
the interfaces r=ga, and r=5b. If the fiber is
transversely isotropic, then H, and H, in (5) are
reduced to zero, and n=1. As in (I) the second
boundary condition in (4) cannot be satisfied
pointwise by the present solution. Instead. we
demand that the average stress o,(+ L) be equal
10 po- Since an infinite matrix surrounds a single
coated fibers, this latter condition is implemented
by simply demanding that the o, stress in the
matrix (which turmns out to be constant in the
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present case) be equal to p,. The additional con-
stants in (5) are defined as:

n= \,Ceo/ C.
Co: -G,
H = _C,, ~C.

H2={(C,,-C,,)a,*-(C,,—C“)a. ()

+(Crx - C.g)a:}
1

x(C.,=C,) .

The stress fields in the three phases are now
obtained from the above displacement fields as:

of = (Car" '+ Curn ) A
+(CrrH1 + CMHX + Cr:)‘?
+[C(Hy - a,) + Cy(H, - a,) - C.a,]
o) = (Cenr™™' + C”r"")A'
+(CH + C H +C,, )
+[ColHy = a,) + Cou(Hy - a,) - Cppa,) 8,
(7)
of = (Cn"’"-l + Cox’"-l)"'
+ (Cr:H\ + C‘tHl + C:x)‘?
+ [C,,(Hz -a)+ COJ(HZ - a.) - Cuaxlao

s
o8 = 2k848 - Zm'f—2 + 1% ~ (2k%a} + 1%} ) 6,

[ ]
o8 = 2k4% + zm-%- + 1% = (2k3a} + %3 ) 6,
(8)
oS = 2/%4% + n¥ — (2/%} + nda} ) &
m
om = 2kmA™ - 2m= 22 4 =0
r
=(2k™a? + I™al) 6,
m
o = 2k™A= + 2m= 20 4 =0
r
- (2k®a3 + 1%a7) 8, 9)
\ 0" = 2/™A™ + n® - (2/™aF + n™al)6,.

There are several axisymmetric solutions in mi-
f cromechanics of fibrous media which have been

found for transversely isotropic fibers. To provide
contact between those ar. the present results, we
evaluate in the Appendix the effective thermo-
mechanical properties of a substitute transversely
isotropic fiber which, if used in the present
axisymmetric loading case. would preserve the
stress fields (8) and (9) in the coating and matrix.
Under axisymmetric loading, the substitute fiber
has the same overall response as the cylindrically
orv otropic fiber, and the uniform stress and strain
found in the substitute fiber is equal to the fiber
volume average of the field (7).

Chen and Diefendorf (1985) pointed out that a
nonuniform thermal stress field, similar but not
identical to (7), may develop in a cylindnicaily
orthotropic fiber which is not bonded to a m>rix.
The existence of such fields in embedded fibers is
accounted for by the present solution.

2.3. Transverse shear loading

The statically admissible displacement field in
the cylindrically orthotropic fiber, and in the
transversely isotropic coating and matrix, for the
loading described in Fig 2, can be found as fol-
lows. For a homogeneous elastic medium sub-
jected to a uniform field of simpie shear deforma-
tion, the displacement components are defined by:

u,=cx u,=-cy u,=0, (10)

where ¢ is a constant. In cylindrical coordinates
this becomes:

u,=crcosld u,= —crsin2¢ u,~0. (11)

%

INERSNERES

T
Ty

Fig 2 The auxiliary problem for transverse shear loading.




T. Chen et ol / Compasites with coated fibers 2

3333838887,

ORORONONORONONONOR
Fig. 3. The awuliary problem for longitudinal shear loading.

In the semi-inverse solution of the present
problem, Fig. 3, we therefore assume that the
displacement field in the anisotropic phases will
have the form

u’ = U(r) cos 2¢
ul = Ul (r) sin 2¢ (12)
ui:) ,0'

where U!*(r), U{*(r) are unknown functions of
r which need to be determined from the equations
of equilibrium. In particular, the substitution of
(12) in the stress-strain relations of the fiber (1)
gives stresses which, when substituted into the
equations of equilibrium in cylindrical coordi-
nates, provide the following equations for evalua-
tion of U'*(r), U (r):

dzU,(") C,, dU,(”

"4l 5 T dar
| 2y Gy) U
r dr

2
- 5(Ga+ G =0 (13)

4 1 ,
(6w U

2(Goy + Co) AU 2Gy + Coa)
- r _cﬁ' - rl
e | Gy 47
dr? r dr

U("
(4

+GY

- -———z——-U.(”-O. (14)

Note that a change in temperature does not
contribute to the present loading case. Moreover,

according o our original intent, we admit cylin-
drical orthotropy only in the fiber domain and use
a reduced form of the general solution to recover
the fields in the transversely isotropic coating and
matrix.

The above equations can be solved using the
substitution r = ¢; this yields two coupled
ordinary differental equations with constant coef-
ficients for the unknown functions. The result is:
U(r)= 2[(G~ +Co) —m(Cy + Gro)] Ar™
+2[(G~ +Cp) +m(Cy + Gro)] Bro™
+2[(Gre + Cpo) = M(Cy + G,)|crm
+2[(G~ +C,) +m(Cy+ G,,)] Dr=™

(15)

Uy(r)= [C,,nf - (4G, + C,,)] Arm
+[Cm - (46, +C,)| Brm
+{cm- (464 + G ) crm
+[cm- (46, + )| Dr ™

(16)

where 3 and #3 are the roots of
C,Gyn* + [4C3 +8C,G, - 4C.C,,
=Go(Cr+ Cog)| 12 + 9GsCou = 0.

and A, B, C and D are certain constants.

As already noted, (15) and (16) are admitted
only in the fiber domain. However, to assure
boundedness of the displacements at the origin,
the terms which contain the negative powers of n,
and 7, must be excluded. The displacements in
the coating and matrix domains are special forms
of (15) and (16). The resuiting admissible displace-
ment fields in the phases can be eventually sum-
marized as:

= g {2[(Go+ Coa) = m(Co+ Gu)]

xa,(i)“ +2[(Go + Coa)

—ma(Co+ Gy)]ei(F) "} con26.(17)
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u:-;"(%{[c,,ni-(4o,,+c Na(z)"
+[Cmd = (464 + G 5 }sm2¢
ul =0
it 22 (- (3 o+ ()
60 FJere ()] cos2e
it g3l (F) - (5)e
_.(5'-1)(g)c2+(-f-))b2]sin2¢
(18)
ut=(Q
e 2 [2re (bar 1 e (2) ] cos20
u:'-:’:?,,[—lir (éa l)l:a,+(7)3c,]
sin 2¢ (19)
ul=0
where
§ = (2mb+k8)/kS, §q=(2m® + k™) /K™

and o, is normal transverse stress applied at infin-
ity, Fig 2.

Observe also that the equations have been writ-
ten in terms of a nondimensional radial coordi-
nate (r/b), and that as yet unknown constants a,,
a,, ay, by, ¢,, ¢;, ¢;, and d, bave been intro-
duced to replace the A4, B, C, D constants in (15)
and (16).

Since both the coating and the matrix are re-
garded as transversely isotropic, we have used the
connections (2) between elastic constants to intro-
duce the Hill's moduli k8, k™, and m®, m™. We
finally mention that when applied to isotropic
pbases, eqns. (17) to (19) become identical with
(39) to (45) in (I), and are also in agreement with
the results obtained by Christensen and Lo (1979,
1986). The latter were obtained for an isotropic

fiber and coating in a transversel/ isotropic mz-
trix.

The stress fields for overall transverse shec.
loading can be derived from the displacement
fields (17) to (19). using the appropriate constitu-
ive relations (1) or (3). Since these fields are of
interest in applications, and their derivation is
cumbersome, we reproduce them here:

rm-l
o= { [Cfim + Cy (28, + )] 015

-1

+ [C"fz"h +C.(28; ‘fz)] G rTih_}

X 0y COS 2¢
-1

™
ot = {[Cocfim + Coa 28+ 1)] 1 T
rm-t
+ [waz"lz +Coe(28:+ 12 )] QW }

X 6y cOS 2¢
n-1

ux' - {[C:rfl"l + Cxo(zsl +}1)] Gy :_bT
!3’1
+[Gotim + Cu282+ )] e g )

X Gy COS 2¢

rh- -3
°~"G [( =2fi+gm - 81)‘1 I

'1-1

+(=2f/+8gm - 8:)": 5% ]Uo sin 2¢
(20)

o= {[31:'(6, -1)- 6m'] ;—ja, + m;fb_l,
- [ks(ey = 1) + 2ms] ey - 3m'f—:b,}
x ibi’;coc 2¢
of= {[3/"(5‘ -1)+ 6m'] 1-42 - m‘-dbl
- [K3(g, - 1) - 2m9) Zer+ Imi b,}

x;—q"eotu
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. r? b
o= 3(&. - I)Faz - (E,‘ 1);‘1’6'2
bid 2
x T % €OS ¢

r? d b b
a,“ = [6?02 - 'Zi - 2r—2'Cz - 3r—"b2]
X %oo sin 2¢ (21)

o™= {2—';: - [k™(¢n—1) + 2m™} %a,

b’ b
_3m’“-’—‘c3} 5’%05005 2¢
2m™ b
o - {- - [k2(6a-1) - 2m"] 2,

3 b
+ 3m“%c,}ﬁscos ¢

o = [(1 - 5.)%:03];—::%6« 2¢
O = — [(1 + (%)za,) + %(%)‘c,]ao sin 2¢
(22)

where

hi= fg_’.{(6~+ Cos) ~Mm(Cy + Gn)]

fi= jg_”[(an"'cn)"h(cn"'an)] @)
5H- fg:[crr"% - (46'0 + C“)]

- # -4_3:[ch"§ = (46’0 + C“)] .

The interface conditions to be satisfied are the
continuity requirements for the stresses o,,, 0,
and the displacements u,, u, at interfaces r=g
and r = b. These conditions provide the equations
for evaluation of the eight unimown constants, but
the solution is best obtained numerically. It can be
verified that the displacements (17) w0 (19)
guarantee that the average of the stress o,, in the
solution domain does vanish, and that at infinity
there is:

Ozl ™ % ayylr-n- —0q. (2‘)

2.4. Longitudinal shear loading

For this loading case, which is described in Fig,
3, we retrace the steps outlined in the previous
sections. The displacement field has only one non-
vanishing component, which must have the form:

u,=0, u,=0, wu,=u/r,e). (25)

The corresponding nonvanishing strain compo-
nents are:

21 du, 1 9,
“=3 9 w2 T (26)
and the stresses are:
du, Gy, Ju,
g,= G,,-ar— y O™ % e @2n

Note that these stresses automatically satisfy
the first two equilibrium equations in cylindrical
coordinates, while the third equation

d0, do, ) 3
LSS S Rkl @)
yields the relation
u du %y
’z'a"_;' + r# + qz-a—¢zi =0 (29)

for the unknown displacement u,, where ¢
=y u/Gn-
Letting

u=- R(’)’(’) (30)
leads readily to the solution
ul=mA'r sin ¢
8
ut=(avr+ ) sine (31)

u:'-(/l'r+ 87-) sin ¢.

The stresses are then obtained as
0! =G,A'gr? ! sin ¢

o), =G,,A'r"" " cos ¢

8
atmp{ -2 s
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.
ol -p'(A‘+ -rT) cos ¢

o7 =p{a"- 5 sine

2

m

%"."p'“(A'“f—;) cos ¢ (32)

where, we recall, p%, p™ are the longitudinal shear
moduli of the phases.

This completes the solution of the auxiliary
problems. The solutions will be implemented in
the micromechanic model described in Section 4,
in order to obtain the effective properties and
stress fields in the composite.

3. Phase stress and strain averages

The stress fields obtained in Section 2, and the
phase properties employed in finding the fields,
were both written in the cylindrical coordinates
associated with the fiber axis. However, utilization
of such fields in evaluation of overall properties,
¢.g.. by the Mori-Tanaka method, requires that
they be written in the Cartesian system. Further-
more, since the composites contain a curvilinearly
anisotropic phase, special care is needed in the
determination of effective properties. This section
presents the framework for dealing with such sys-
tems.

A representative volume of the composite is
subjected to homogeneous displacement or trac-
tion boundary conditions and to a uniform tem-
perature change defined as

u(S)=¢x 0(S)=4,
0,(S)=cn 8(S)=6,

where & and ¢, denote the displacement and trac-
tion vectors respectively, ¢;, o and 8, are uni-
form strain, stress and temperature fields and »
denotes the outside normal of S. Suppose that the
actual stress and strain fields in the phases are
known in the current coordinate system and are
denoted by primed letters o’(€) and ¢’(§). The
phase properties in the § system are denoted by
L', M, m’ and I'. For example, if the system is
identified with the cylindrical coordinates of Sec-

(33)

tion 2, then (1) and the phase stress fields ob-
tained in the solution of the auxiliary problems
represent such primed fields. The corresponding
quantities in the Cartesian coordinates are de-
noted by similar but unprimed letters.

Let the transformation between the current and
ihie Cartesian components of the fields at any
point in a given phase s be described by as:

o(x)=Ra/(£). ¢ (x)=Q¢(§). (34)

where, according to the conventional use in the
literature, with the factor 2 in the shear terms of
the 6 X 1 strain vector, the transformation matrices
R and Q are related by RT = Q~!. In a transfor-
mation between the cylindrical and Cartesian sys-
tems, R and Q are functions of the angle ¢.

Next, write the phase constitutive relations, such
as (1), in the symbolic form:

o, (€)= L,(&)¢,(§) +1;(£)6,,
¢, (§) =M, (€)g, () + m,(£)6, (35)
where

M/ =L ™ and = ~L.m,

Equations (34) and (35) provide the relations
o,(x) = RL,Q7',(x) + RI}6,,

¢,(x) = QMR 's,(x) + Om 6,

at each point x. Note that Q, R, L,, I, and m,
may now be functions of x, but for brevity in
notation the argument will be omitted in the
sequel. Averages over the volume of the phases are
given by the expressions:

(36)

o= 7 [ o(x) a¥,= 3 [ RLIQ",(x) ¥,
r g [ riit
(=7 [ 0(x) 4V, = 5 [ QMR () 4,

+ 7 [ ot av,.
(37)
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The local fields (36) in the composite aggregate
are related to the uniform fields through certain
influence functions A,(x). a,(x), B,(x), b(x)
given by

e(x) =4, (x)e+a,(x)b,
o(x)=B(x)a,+5(x)b.

In this paper strain and stress symbols followed
by the argument (x) will denote local fields and
those without an argument wiil refer to averages.
Similar relations can also be written for the phase
volume averages

(38)

¢ = AI‘O + ﬂ.roO
o, = B,oo + bxoo (39)

where the constant tensors A,, a,, B,, b, are the
concentration factors. The average stress in the
phases under boundary condition (33,), is given in
accordance to (37,) and (38,) by

o = %fy'm.;g"[zn,(x).o +a,(x)6] d¥,

Lo
t '[V'm,oo dv,, (40)

where we have used the fact that a.uniform tem-
perature field # =46, prevails in the composite.
Similarly, the average strain ¢, under (37,) is:

€, = %f QM,'R-llB,(x)q,-f-b,(x)ao] dv,
7Y,

l ’
+ f,,,Q""% dv,. (41)

Solve for ¢, and a, in (39) and substitute in (40)
and (41):

o, = LJ‘) + 1100

42
¢, =Mg, +mb,, (42)

where

1 ‘- -
L= [V’fy,RL,Q '4,(x) dV,]A, !
/= {[- Tl,:fVRL;Q"A,(x) dV,]A,"a,

+ %fyRL;Q"a,(x) av, + %fvm" dV:} (43)

1 g~
M = [V,/V‘QM’R lB:(x) dV,]B,.I
1 ’ -
m,= {[— V‘fv'QM:R lB‘v(") dV,]B,-lb,

1 . 1 ,
+ V‘fV,QM,R 'b,(x) 4V, + V’fv’gm, dv,}.
(44)

Note that in view of their definitions in (43) and
(44), the quantities L, and M, are fourth order
tensors and /, and m, are second order tensors.
Like the overall effective behavior of the com-
posite aggregate, these effective tensors depend on
the nature of the influence functions 4,(x). B,(x),
a,(x), and b,(x). Since the latter are approxi-
mated differently in different micromechanical
models, L,, M,, /,, and m, may vary from model
to model. Furthermore for these tensors to qualify
as effective properties, they must obey the relation

L=M"", I,=-Lm’ (45)

in the context of the used theory. Proofs of similar
relations between the overall effective properties
tensors may also be needed.

4. The micromechanical model

The effective properties and stress fields will be
calculated using the Mori-Tanaka model. This
method of evaluation of the influence functions in
(38) and of the effective properties of the com-
posite aggregate has been described in (I). Here
we summarize only those expressions which will
be needed in the sequel. The first step is the
evaluation of local fields in the dilute problem,
where a single coated fiber is embedded in a large
volume of matrix, Fig. 4. A uniform stress o,, or
strain ¢, and temperature change 6, are applied
to the matrix at infinity, such that o, and ¢, are
the as yet unknown averages stress and strain in
the matrix, while the composite is subjected to the
boundary condition (33,) and (33,), respectively.
The solution of this dilute problem can be ex-
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W(S') = fmX
" §', - /O(S') =§,

\ . )

n
LAl

A=t
v Scfeus)=b

v
/! y

Fig 4. A schematic representation of the Mori-Tanaka's
method for thermoelastic problems.

pressed in terms of the influence functions 7,(x),
t,(x). W,(x), w,(x) as follows:
¢, (x) = T,(x)eq +1,(x)6,
0,(x) = W,(x)a, + w,(x)6,.

The magnitudes of ¢, and g, are derived from
the requirement that

(46)

e=Lcg,=e
k]

47

C-EC",-%o S-fo"mo ( )
E

where ¢, are the phase volume fractions such that
Lc¢,=1, and ¢, and o, are the phase volume
averages of the local strains and stresses. The final
result is

= [;c,f,]-l[co-oogc,t,]

o, = [ZC,W.]-‘[%-%EC,V,]. s=f,g m.
, ' (48)

Note that in the dilute configuration there is

Tool, t,=0
Woasl wy,=0 (49)
where 7 is the identity tensor.
In this way, the evaluation of the quantities of
interest in (38) is reduced to finding of the con-
centration factors T, t,, W, and w,, which are
defined as the phase volume averages of the in-
fluence functions T,(x), ¢,(x), W,(x) and w,(x)
in (46).
Substitution of (48) into (46) provides the in-
fluence functions indicated by the Mori-Tanaka
model. These are:

4= z(x)[);c,n]"

- (50)
o= —r,(x)[):c.r,] [):c,r,] +1,(x)
5~ w,u)[zc,w,]" .
b= - M(x)[zc.m]"[):c.w.] 4w (s).

(51)

Use of (50) and (51) and (43) and (44) gives
L~ [p’v [ ) dv:]z;"
L=-La+y [RLQ (D, ()

1 ’
g jy.m, av,
1 gy
M, = [p; J, oM~ (x) dv,]ur‘
= -My+ 7 [ QUR () dV, ()

+ -},‘ fV'Qu; av..

On the other hand, knowledge of the local
fields (46) results in the prediction of the effective
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stiffness and compliance tensors L, M, and effec-
tive thermal tensors ! and m. These are

bo[gess]zer]

[peaffgen] [xe] oo
*[getean)
b i
we[emm[gom] [-zen] o0

+ [ch(lel+ml)j N

We now prove that L,, /,, M, and m,, as predic-
ted by the micromechanical model in (52) and
(53), satisfy:

L=M", I,=-Lm,. (56)

Consider (46,), with §, = 0, and write this equa-
tion in an equivalent form:

¢(x) =T (x)n

57

o,(x) = RL,Q™'T,(5) M.8,, 7
Table 1
Thermoelsstic constants

Fiber Coating Matrix
Eq (GPa) 138 344 96.5
E, (GPs) 122 M4 96.5
E, (GPs) 7722 344 96.5
G,y (GP2) 207 143 371
G,. (GPe) . 689 143 371
G,; (GPs) 20.7 143 371
e 0.2% 02 0.3
Ve 0 02 03
’, 028 02 03
e, (10°%°C) 280 33 9.3
a, (10°%°0) -~18 33 9.3
a, (107%°0) -18 13 9.3
Pitch precursor carbon fiber ¢, = 0.4
Carbon costing g = 0.0107
Titanium aluminide matrix ¢, = 0.5893

which, when compared with (46,) under 6, =0,
implies that : ‘

W,(x)=RL,Q™'T,(2)M, (58)
Substitution of this last equation into (53,) yields

-1
M, = T,[-%fKRIJQ“T,(x) dV,] : (59)

Finally, compare (59) with (52,), to show that
(56,), is in fact satisfied.

Let us now proceed to prove the second rela-
tion in (56). Start with (46,), let ¢, = 0, and write
it in the following equivalent forms:

¢, (x)=¢t(x

G,EX;'RL;?".(‘)%‘RL;"';% (69)

or

o,(x) = RL}Q™t,(x)8 ~ RL;m,
W)y~ (2l (61)

where it should be noted that /8, is the stress
induced on the outside boundary of the matrix by
a temperature change under zero overall strain
Compare (61) with the last of (46):

ws(-') - RL;Q-":(‘) - RL;'; = “’,(l)l‘-
(62)

Integrate now (62) over V, to get w, and substitute
both w, and w,(x) into (53;):

1 for
m, = -M,[v; jv'u,a 't,(x) dv,]

+M,-‘1§ f,, RL.m, dV,

M [ o avae s 7 [ e,
-1‘5 J,RMR () V1 (63)

Finally, multiply (63) from the left by ~L,, recall
the definition of M, in (53,), and compare with
(52;), to show that (56,) is in fact fulfilled. Since
(56) are satisfied by the model, the proof of con-
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sistency relations L=M"! [= -Lm, between
the effective properties follows along the lines
shown in (]).

It should finally be noted that the thermal
stress influence functions a,(x), ,(x) and effec-
tive thermal stress tensors could also be found
from a correspondence between mechanical and
thermal fields in heterogeneous aggregates. We
follow here the direct approach; the latter route,
outlined by Dvorak and Chen (1989), gives en-
tirely equivalent results, but the quantities of in-
terest are obtained from exact connections be-
tween b,(x) and B,(x), and also between m and
M. The results in that work have been derived
only for systems with transversely isotropic phases,
but they can be extended to composites with cy-
lindrically orthotropic fibers if the actual fiber
properties are expressed by effective ones, as out-
lined in the Appendix. The resuiting forms are
very simple, this may be preferable in some appli-
cations.

It is now necessary to assemble the W, and w,
tensors from the solutions of the auxiliary prob-
lems, and also to construct the M, and m, tensors
in accordance with (44). To this end, suppose that
we have already obtained from (33,) the Cartesian
components of the local stresses in the auxiliary
problems. Let the external boundary stresses p, in
Fig. 1 with §, =0 be denoted by ay(1), and the
Cartesian components of the local stresses, under
a unit load g,(1) = 1, be given by o,(1). Similarly,
0,(2) denotes stress o, in Fig. 1 with §, =0, and
0,(2) the corresponding local Cartesian stress field
under 6,(2) = 1. The external stresses in Figs. 2
and 3 are respectively denoted by a,(3) and ay(4),
and the corresponding local Cartesian stresses un-
der external loads by ¢,(3), 0,(4).

The external stress vector in the Cartesian sys-
tem can be therefore written as.

o [2(2) +0,(3)] /2

g, [00(2) - 5 (3)] 2

o] (1)

oS (" 0% (4) (64)
o o (4)

o), o(3)’

where a,(3)" denotes the external loading config-
uration in Fig. 2 rotated by 45°. Denote the
average of these stresses over the fiber and matrix
by &8, (s = f, g). By definition, the W, tensor repre-
sents the resulting average Cartesian stresses in
the constituents due to a unit Cartesian stress
tensor at infinity. Therefore the columns of the
(6 X 6) W, matrix can be written as:

W= [5(2)+5(3)]/2 s=tf.g
WP =(5()-603)]/2

WO =5,(1), WO =5,(4), W, =5,(4),
W® =5,3),

with the last column W® being equal to the
average stress temsor §,(3) rotated by 45° about
the fiber axis. Finally the vector w, (s=1, g) is
equal to the average Cartesian stress components
in the fiber and coating due to a unit temperature
00 = 1 at inﬁmty.

This completes the derivation of the concentra-
tion tensors W, and w,. The stress fields can now
be obtained from (46), where the average matrix
stress g, is determined from (48). Numerical re-
sults for these fields under different loading con-

(65)

Table 2
Effective compliance matrix
0.01139 -0.004253 -0.0005519 O 0 0
-0.004253 0.011% -0.0005519 O 0 0
-0.0005519 -0.0003519 00027117 O 0 0 MPa-!
0 0 0 00U 0 0
0 0 0 0 0.02450 0
0 0 0 0 0 0.03130
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STRESS MPa
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Fig. 5. Stress distributions for the case of uniform temperature
change -1°C.

figurations will be given in the last section of the
paper, together with the effective compliance
tensor M for the system considered.

Finally, we mention here that numerical caicu-
lations show that the resulting M matrix as pre-
dicted by the Mori-Tanaka model is symmetric.
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Fig 6. Average stress in the coating for transverse aormal
loading 1| MPa versus the angle ¢.
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Fig. 7. Stress distribution for transverse normal loading 1 MPa
along ¢=0°.

Such behavior was also observed in (I), in the
simpler system made of isotropic constituents.
Unfortunately, due to the complicated nature of
the concentration factors, an analytical proof of
this property cannot be given for the present sys-
tems.

STRESS MPa

0 02 O § 08 1.0 1.2 14 146
RADIAL DISTANCE / FIBER RADIUS
Fig. 8. Stress distribution for transverse normal loading 1 MPa
aloag ¢ = 90°.
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S. Numerical results

We consider a fibrous system made of pitch
precursor carbon fiber, carbon coating and
titanium aluminide matrix. Stress fields are
evaluated both for thermal changes and for typical
mechanical loading situations. Of particular inter-
est are the thermal stresses caused in these systems
by a uniform temperature change.

Table 1 shows the thermomechanical properties
and phase volume fractions of the constituents of
this system; the fibers are cylindrically ortho-
tropic, the coating and the matnx are isotropic.
Material constants do not vary with temperature.
The values of material constants were taken from
work in progress by Diefendorf (1989). When
material properties are functions of temperature,
the resuits developed here can be readily imple-
mented in an incremental form, using the proce-
dure described in Dvorak et al. (1989).

The effective compliance matrix predicted by
the model is given in Table 2. For axisymmetric
loading, bowever, the replacement scheme de-
scribed in the Appendix can also be used to obtain
certain effective properties. For the system consid-
ered, the properties of the equivalent transversely
isotropic fiber, as furnished by eqns. (A.9) and
(A.10) are:

k = 53.4 GPa, | =26.7 GPa, n = 786.2 GPa,
a,~-169x10"%/°C a;,=2.086 x10°¢/°C.
(66)

With these values, eqns. (7-10) can be readily
evaluated, in the form applicable to systems with
transversely isotropic properties.

Local field are illustrated in Figs. 5-8. Figure §
shows the thermal stress distribution as a function
of a normalized radial distance for the case of a
uniform temperature change of —1°C. It is seen
that the hoop stress attains a maximum at the
fiber-coating interface and that the stress field is
not uniform within the fiber. We note here that
for radially orthotropic fibers (C,, > C,,), the
stress field becomes infinite at the center of the
fiber, as already pointed out by Avery and
Herakovich (1986), for the case of a single fiber.

This may require a reexamination of the present
solution.

Figures 6-8 show the average stress in the
coating for the case of pure mechanical loading in
simple tension. Figure 6 shows the stresses in the
coating as a function of ¢, and Figs. 7 and 8 give
the stresses in the fiber, coating and matrix under
simple tension at ¢ =0°, and ¢ =90°, respec-
tively. Since, both 0, and »n, are greater than 1 in
the present system (see eqn. 16), it is interesting to
observe that the radial and hoop stress become
zero at the center of the fiber. We note. however,
that n, = 1, 0, = 3, in an isotropic fiber, and the
stresses at the center of the fiber have a finite
value. If for certain material properties 5, and 7,
are less than 1, the stresses at the center of the
fiber become singular.
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Appendix

In this Appendix we prove a result which is of
interest when the fibers are cylindrically ortho-
tropic.

Consider a composite specimen containing
aligned fibers of circular cylindrical shape and let
the specimen be subjected to an axisymmetric
loading together with a uniform temperature
change (see Fig. A.1). The loading conditions on
the specimen are

0, (C)=0o, o, (xH)=0 (A1)

where C denotes the cross-section of the specimen
perpendicular to the fibers and 2 H is the height of
the specimen. For sufficiently long fibers the load-

2 [
T I
2 : .
. (O
— —;?. L el ,
-— — - o—— —_—

~
l

4 a
Fig. A.l. A schematic representation of equivalent fiber.

ing condiuon (A.1,) can be replaced by 6, = 0, so
that wt s satisfied in the St. Venant's sense. We
will now show that it is possible to replace the
cylindrically orthotropic fiber by an equivalent
transversely isotropic fiber, without changing the
stress field in the surrounding matrix. To achueve
this, proceed in the following manner. Take out a
single orthotropic fiber, load it by certain radial
tractions 0°, and uniform temperature change 6,
and also allow a linear displacement in the z-di-
rection given by

u,=¢z. (A.2)

Then, obtain the solution for the radial dis-
placement u, |,., and &' where the latter denotes
the average longitudinal stress in the fiber. Next,
consider a transversely isotropic fiber with as yet
unknown properties, load it again with ¢, 8, and
¢%, and compute the radial displacement and aver-
age axial stress, now denoted by u;|,., and 4;.

Demand the equality )

Uy =l mge T =8l (A.3)

as a basis for obtaining the properties of the
transversely isotropic fiber. The following deriva-
tion shows that if the overall load remains axisym-
metric it is indeed possible to replace the cylin-
drically orthotropic fiber with one which is trans-
versely isotropic.

The resuits developed in the paper provide,
after considerable manipulation:

a 0

lrme ™ T T %

ac?

CnH! + Cn”\ + Crt
G+ Cy

+[Hl-

+[Hy+ [(Coa,+ Cyay + Goa,)

'(Crr + Cn)”z]
x{Ca+Cy) | aby

(A.9)
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o GCm+ C. 2 0 it turns out that the second term in equation (A.4)
" Ta+Cy 1+ is related to the first term in (A.5), which in tumn 1s

+ (Cr:Hl + Co:Hl + C.':)

2 Co+C,

-

" T-nCa-C,

X(CrrHl + CnHl + Cr:) ¢3

+oo{(c,,+6.,)Hz

- (C,,d, + Co:ao + Cx:a:)

2 Cn+ Cor
*T+aCa+C,

X [(C,,ﬂ, + C,‘ug + Crxaz)
‘(Cn + Cn)”l]}
(A.S)

, l !
W= gz0t - 38 +a(ar+ grale (A6

—l'-i 0+ n_iz 0 __ "_iz 00 (A7)
a, %o z e % |2 .
where
- C—“ H. -—E—C.“—C.’x
" Crr ’ ! Crr- ()
Hz-{(C"-C.,)C,+(C~‘C~)ﬂ.
+(C,,-'C..)d,}
x{C,-Cu) " (A.8)

Five constants k, /, n, ar and a, need to be
_determined, yet if one demands that the coeffi-
cients of o?, ¢! and 6, be equal to each other in
the respective expressions, then (A4, A.5) and
(A.6, A.7) give six equalities. Interestingly enough,

identical to the relation between the second term

in (A.6) and the first term in (A.7). This fact,

which can be proved after certain manipulations,

reduces the number of equauons to five, and

provides a unique way for obtaining the effective

properues of the cylindrically orthotropic fiber.
The resulting properties are:

C,,ﬂ + C‘t 2
k=(Cm+ G2 1= oo, Tom*
[2
n= -k. + [(Crxﬂl + CQxH\ + Cu) (Ag)
2 Cm+C,

T+ Cn+C,

X(C,H, + C H, + C,,)]
TR
x{(Crr+Cox)”2

- (C,,a, +C.aqt C,,a,)

2 (Crxn"'cﬂ)
1+9 (C,,n + C,,.)

x [(C,,ﬂ, +Cya,+Ca,)

-(c,,+c,,)n,]}

(A.10)
ar= {”z + I(Cn"r +Cya,+ Coa,)

~(C,+ C ) Hy|{Cm + C,.}"}

{
= 3%
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Composite systems consisting of a matnx phase and coated inclusions with curvilinear ansotropy are considered. and a
concise framework is established for analysis of their effective thermomechanical behavior. An exact relation between the
effective thermal stress tensor and the purely mechanical influence functions of such media is denved. The presented analysis
includes as a special case some previous work by the authors on composites with coated and cylindncally orthotropic fibers.
¢.g.. carbon fibers. Furthermore. it allows to prove analytically certair symmetry and consistency propertes of the effectine
thermomechanical tensors of such systems as approximated by the Mori-Tanaka micromechanical model.

1. Introduction

The present paper is the conclusion of two
previous studies by the authors, Benveniste et al.
(1989), and Chen et al. (1990) (denoted (I) and
(I), respectively, in the following), on micromech.-
anical modeling of composite systems reinforced
with coated fibers which may be curvilinearly an-
isotropic. Interest in problems of this kind is
motivated by the use of coated carbon fibers which
may possess circumferential or radial orthotropy;
sec for example, Avery and Herakovich (1986),
Hashin (1990), and other references cited in (I)
and (II).

In the previous studies, we evaluated both the
effective moduli and the local stresses in the phases
in terms of the Mori-Tanaka (1973) estimates,
within the framework developed by Benveniste
(1987) and Benveniste and Dvorak (1990). How-
ever, the diagonal symmetry of the effective stiff-
ness tensor L wa  verified only by numerical
examples. Furthermore, the effective thermal stress
tensor / was evaluated by a direct application of

' Visiting from Department of Solid Mechanics, Materials and
Structures, Faculty of Engineering, Tel-Aviv University,
Tel-Aviv, Israel.

the Mori-Tanaka method. but consistency of the
obtained results with the alternative provided by a
Levin-type procedure was not established tLevin,
1967).

The paper has three major objectives: (a) to
establish a transparent and concise framework for
computation of the effective thermomechanical
moduli of composite system. reinforced by curvi-
linearly anisotropic, coated inclusions; (b) to ex-
tend the validity of the Levin-type relationship to
composites of this kind; and (¢) for the fibrous
systems considered in (I) and (II), and for the
micromechanics model used therein, to establish
analytically the diagona! symmetry of the predic-
ted L tensor, and consistency between the “direct™
and Levin’s derivations of the effective thermal
stress tensor /.

2. Effective thermomechanical behavior of com-
posite media with curvilinear anisotropy

Let us consider a composite medium consisting
of a rectilinear matrix phase and inhomogeneous
inclusions. The term “inhomogeneous inclusion”
is used here to describe a reinforcing particle or
fiber which has variable thermomechanical moduli

0167-6636/91,/%03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved
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in a fixed Cartesian coordinate system, or which
consists of several homogeneous phases.

In general, the local thermoelastic constitutive
equations in such systems can be described as:

o (x)=Lg.(x)+1.0. (1)
o(x)=L(x)¢(x)+1(x)6,

where o, ¢,. 0, L, I, with s=f, m, denote
respectively the stresses, strains, temperature, and
the stiffness and thermal stress tensors in the
inhomogeneous inclusion (f) and matrix (m), re-
spectively, all written with respect to a fixed
Cartesian system. Note that the L, and /,, tensors,
being rectilinearly anisotropic, are independent of
X.

Examples of such systems are composites con-
sisting of a rectilinearly anisotropic matrix rein-
forced by non-coated or coated cylindrically or-
thotropic carbon fibers, or simply reinforced by
coated fibers with an isotropic core and coating.
In a cylindrically orthotropic carbon fiber, the
stiffness and thermal stress tensors are constant
when-written in terms of a coordinate system
located at the center of the fiber with the three
axis pointing in the axial, tangential and radial
directions respectively. There are nine stiffness
and three thermal expansion coefficients, (see (II),
for example). Obviously, the space dependent
Cartesian L,(x), I;(x) tensors are related to these
constants through the usual transformation law
which depends on the polar coordinate ¢, itself a
function of the generic point x. A coated fiber on
the other hand, even if it consists of an isotropic
and homogeneous core and coating, may also be
considered as an “inhomogeneous inclusion.” In
this case the tensors L,(x) and /,(x) are equal to
the constant tensors of the core (L., I.) or the
coating (L,. /,). depending on the position of the
generic point x within the fiber. Such a coated
fiber is therefore an *“‘inhomogeneous inclusion”
possessing piecewise constant matenals properties.

In this section we provide a framework for the
computation of the effective properties of the type
of composite systems described above. The inho-
mogeneous inclusions will be formally denoted by
the tensors L,(x) and /,(x). irrespective of their
internal structure. These inclusions may be un-

coated or coated inclusions with curvilinearly an-
1sotropic constituents.

The effective behavior of the composite is given
as

o=Lé+ 10, (2)

where L and ! are overall stiffness and thermal
strain tensors, and o, € denote volume averages of
the local stresses and strains, over a representative
volume element. These averages are given by:

6=C(6(+C—, Q-:C(f_ +C- N 3)
m { wfm

where ;. ¢,. denote averages over the phases. and
¢¢s Cm denote the volume fractions of the inhomo-
geneous inclusions and matrix respectively.

Equations for the determination of L and ! can
be derived by considering homogeneous boundary
conditions on a representative volurre element of
the composite as follows:

u(S)=¢x, 6(S)=6,, (4)
which results in

i=¢,, O(x)=4,. (5)
Define now the influence functions

¢(x)=A,(x) ¢g+ai(x) 6,

- 6
o (x)=A (x) ¢ +a;(x) 6. ©
so that, from (1),, it follows:
A.,(x)-L,(x) A (x). (7)

d;(x)=Li(x)ac(x)+1(x).

Equations (1)-(3) and (5) can be shown to
provide
L=L,+c(A;—LnA,),
{=c . +c(d; —L,a;),

(8)

where the “concentration factors” A, A,, 4, a,.
without the argument ( x), are the volume averages
of the respective influence functions in the fiber:

6('1‘.’10"’6'00. i{=Af¢0+ar00, (9)

Equation (8) is the main result of this section.
Together with Eq. (9), it allows us to treat the
coated-fiber systems described above as two-phase
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svstems consisting of a rectilinearly anisotropic
matrix reinforced by “inhomogeneous inclusions”
characterized by L,(x) and /;(x).

In order to make more transparent the imple-
mentation of Eq. (8). consider, for example, a
composite system consisting of a rectilinearly an-
isotropic matrix and aligned coated fibers with a
cylindrically orthotropic core and coating. Sup-
pose that we are interested in obtaining the dilute
approximation L4, for the ecffective stiffness
tensor. To this end, we embed a coated fiber in the
infinite matrix and subject it at infinity to (4) with
6, =0. Choosing, for convenience, a cylindrical
coordinate system, this auxiliary problem is solved
and the solution for strain and stress fields in the
coated inclusion is obtained in terms of their
cylindrical components. Next., using the usual
transformation law, the Cartesian components
¢;(x) and o,(x) of the strain and stress tensors
and their average €, and g, are recovered. Use of
these values in (9) yields the desired tensors A4;
and A,. and their substitution into (8),, provides
the dilute approximation Lg4,. A detailed descrip-
tion of this procedure which is in fact valid for
any micromechanics model is given in the Ap-
pendix.

Clearly, if the inclusion is homogeneous with its
properties described by a pair of constant rectilin-
early anisotropic Cartesian tensor L, and /, it
follows from (7) that

a4-f=LfAf, 5{=L{a'+l' (10)

so that the expressions in (8) reduce to their
famuliar forms:

L=Lm+C((Lf“Lm) Af, (11)
I=cdi+cply+c (L= L) ay.

A similar dual framework can be formulated
for the compliance and thermal strain tensor M,
and m, and their effective counterparts M and m,
but will be omitted here for brevity.

Finally, we should mention here that in dealing
with coated fibrous composites, the analysis in (I)
and (II) made in fact implicit use of (8). This
could be best understood by recalling that the
employed micromechanics model in these papers

was Mori-Tanaka's theory which uulized the aux-
illary configuration of a coated particle (as an
entity) in an infinite matrix. The equations in (I)
and (II) were however set »'» for the more general
case of hybnid composites consisting of more than
one type of reinforcement. We now believe that
when dealing with coated inclusions the present
framework gives a more concise method of dealing
with such systems. It also allows us to discuss
properties of general nature in Sections 3. 5 and 6
below. The present section, together with Sections
3. 5 and 6 achieve in fact the major objectives of
this paper. For a detailed implementation of the
Mori-Tanaka method to systems with coated and
curvilinearly anisotropic inclusions the reader is
referred to (I) and (II).

~

3. Exact relations between effective thermal and
mechanical properties .-

It can now be shown that the effective thermal
tensor / follows solely from the knowledge of the
influence function A4,(x). This provides an alter-
native to Eq. (8), and leads to an exact relation
between certain averages of the mechanical and
thermal influence functions.

These results can be found from the virtual
work theorem, as done by Levin (1967) in com-
posite media with isotropic consituents. The pro-
cedure is exactly the same, but the inhomogeneous
inclusion is treated with regard to its space depen-
dent moduli. To this end, two alternative boundary
conditions are considered on the external surface
S of the composite:

u'(S)y=¢x, 6'(S)=0, (12)
u(S)=0, 0(S)=¢,. (13)

According to the theorem of virtual work, we
write

[o(x) e, () aV= [1/(x) u(x)dS.  (14)
14 s

as well as

f"u(") ¢,',(x)dV=fl,(x) u'(x)ds. (15)
v s
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where r, denotes the traction vector on S. The
procedure described by Levin (1967), and (14) and
(15) eventually provide

= codlln+ g [ AT L(x) V. (16)
7 ),

where A} is the transpose of the averaged in-
fluence function A, defined under the boundary
conditions (4), at §, = 0. Then,

En=A£,. (17)
that satisfies
CmAm+CfAf=l. (18)

where I is the fourth-order unit tensor.
Thus Eq. (16) can also be written as

1
I=(1-c AT, + ctfoyA}r(x) L(x)dv.
(19)

This last expression provides an alternative to Eq.
(8); for evaluation of I, and leads after some
manipulation to the following exact relation be-
tween the mechanical and thermal influence func-
ttons and their averages:

1 -
(1- A7), + —,—,;fVAI(x) I(x)dV=a,- L, a,.
(20)

It can be readily verified that for an inclusion
which is described by a single pair of constant L,
and !/, tensors, Eq. (19) in conjunction with (11),
provides

I=ly+ (Ly=L)(L=Ly) '(ln=14).  (21)
while (20) gives another familiar form:

a;=(I-A)L_ -L) '(4;-1,). (22)

4. The Mori-Tanaka (MT) model

In the two recent papers (I) and (II), we have
been concerned with modeling of coated carbon

fiber composites, in which the fiber core was cy-
lindrically orthotropic. Both the effective moduli
and the local stresses were of interest, and were
estimated by the Mori-Tanaka (1973) approxima-
tion, in the form developed by Benveniste (1987).
and Benveniste and Dvorak (1990).

As mentioned in Section 2, the description of
the Mori-Tanaka theory in (I) and (II) was given
for general three-phase composite systems which
may consist, for example, either of coated inclu-
sions, or two kinds of fibers in a matrix. As
explained in that work, this micromechanics model
makes use of an “ auxiliary configuration™ in which
a typical inclusion is embedded in an infinite
matrix which is subjected at infinity to the average
matrix strain. In the application of the model to
the coated-fiber composites, the typical embedded
inclusion is a coasted particle, and thus the imple-
mentation can be carried out in the framework of
two-phase composites in which a matrix is rein-
forced by “inhomogeneous inclusions”. The inho-
mogeneous inclusion is now the coated particle.

Specifically, the basic assumption of the micro-
mechanics model amounts to expressing the aver-
age strains €, and stresses 6; in the coated inclu-
sion in the form of:

i =Te, +18,, &="Te,+i6, (23)

where the fourth- and second-order tensors T, T.
t and 7 give the average strains and stresses in a
single coated inclusion within an infinite matrix
subjected to the conditions (4) at infinity. Specifi-
cally,

E5= T(0+'00, 55= f(0+ ioo, (24)

where the subscript s indicates a solitary coated
inclusion in an infinite matrix. It can be shown
that Eq. (23). in conjunction with (3),. (5) and (8)
provides after some manipulation the MT esti-
mates

L=Lm+c,{[(1:—Lm)T]_lcm

-1

. -1 (25)
+e(L-L,) }

I=c(L-L)t+cyl,+cl, (26)
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\yhere the fourth- and second-order tensors L and
{ are defined as

T=LT. i=i-L (27)
The tensors L and / interrelate the average stress,
strain and temperature of a single inhomogeneous
inclusion (or coated inclusion in the present case),
when it is embedded in an infinite matrix which is
subjected at infinity to boundary conditions, i.e.

G=Lé+i6, (28)

Since L and { have been defined in this manner,
they cannot be considered in general to represent
the effective moduli of the inhomogeneous inclu-
sion.

It should be noted that a somewhat different
formalism, which is actually equivalent to that
introduced in the present Eqgs. (23), (25) and (26),
was adopted in (1I). The present treatment is more
transparent and convenient to use in the subse-
quent proofs of diagonal symmetry of the predic-
ted effective tensors.

From their definition in (23), it is clear that the
T. T. t and 7 tensors possess the following sym-
metry properties:

T=Tui=T, 1,=1,, (29)
i,k/’ ./:k1= :ilkv f..,=’.,n

so that from (27)

[ﬁ,u = 1:,,/‘1 = -,.un 1.., = I-,,- (30)

Thus, Egs. (25) and (26) imply that the approxi-
mate L and / tensors satisfy
Ll/kl =L ikl = L/ilk' Iu =1, (31)

J n

However, it is not obvious that the MT estimate of
the L tensor is diagonally symmetric (L,,, =
L,, ), this property needs to be investigated.

S. Diagonal symmetry of the L tensor

Suppose that the inhomogeneous inclusions are
described by a space dependent temnsor L,(x)
which is diagonally symmetric, and that the same
property holds for the L, tensor. An examination

of (25) shows that the term (L — LT on the
right hand side is exactly identical to that which
would appear in the dilute approximation for-
mula:

Ly=Ln+c(L-L,)T. (32)

Since the diagonal symmetry of L, can be estab-
lished from the reciprocal theorem of elasticity
(Benveniste, Dvorak and Chen. 1991), it turns out
that (L — L) T is diagonally symmetric. There-
fore, the diagonal symmetry of the L tensor in
(25) depends on the symmetry of the L tensor.

Unfortunately no general statement seems pos-
sible concerning the diagonal symmetry of L.
However, in the auxiliary problem of a solitary
inclusion in an infinite matrix, one may consider
specific circumstances under which the displace-
ment field induced at the interface S, of the inclu-
sion and matnx is of the type

u(S,)=¢*x, - (33)

where ¢* is a constant strain tensor. Then. Hill's
(1963) formula suggests that

1 .
7 femdv=ig =i, (34)
5

which establishes the diagonal symmetry of the L
tensor under the said conditions. This result will
be useful in the sequel in proving the diagonal
symmetry of the L tensor in (25) for the com-
posite media analyzed in (I) and (Il). We recall
that the systems considered there consist of a
matrix and aligned cylindrical fibers with a cir-
cular cross-section. The matrix and coating are at
most transversely isotropic, while the fibers may
be circumferentially or radially orthotropic.

Define now a Cartesian coordinate system
(x,, x5, x3) with the x,-axis aligned along the
direction of the fibers. Also, x, is the axis of
overall rotational symmetry, and the effective
composite medium is transversely isotropic. The
overall properties are described by Hill's five elas-
tic moduli k, /, n, G,, and Gy, where n is the
uniaxial modulus, / is the corresponding cross-
modulus, and k, G, and G+ are respectively the
plane strain bulk modulus, and longitudinal and
transverse shear moduli.
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The evaluation of n and / requires application
of the following boundary conditions to the repre-
sentative volume element of the composite:

uz(S) =uy(S)=0, (35)

whereas the determination of k. G| and G calls,
respectively, for the following boundary condi-
tions on S:

u(S)=0, u(S)=¢ox;. us(S)=r¢ox;,

u(S) =¢pxy,

(36)
u(S)=€ox;, u(S)=0, uy(S)=¢ex,

(37)
u(S) =0, u(S)=¢€oxs, u3(S)= —eox;.

(38)

For the auxiliary problem of a single cylindrical
fiber in an infinite matrix with which we were
concerned in (I) and (II), the boundary conditions
(35) and (36) induce an axisymmetric displace-
ment field, whereas (37) result in an anti-plane
field. Both of these solutions produce at the inter-
face S, of the solitary fiber a displacement field of
the type (33). Specific form of the solution ap-
pears in (II). Thus the L tensor pertaining to these
loading conditions is diagonally symmetric. Un-
fortunately, the last boundary condition (38) does
not induce at the interface S, a displacement field
of the type (33). Therefore, a different way needs
to be found to prove the symmetry of L in this
case. The argument which will be given here uses
the rotational symmetry of the system, in conjunc-
tion with the loading configuration described by
(38), to show that the average strain and stress
tensors in the inhomogeneous fiber with rotational
symmetry can be described by

0 0 0 y O 0
i=|0 a 0| 6=|0 B 0 | (39
0 0 -a 0 0 -8

With this result, the transformation between g,
and €, in (28), at 6, =0, can be explicitly written
as

y=Liyna+ Lyy(-a),

B=Lya+ Lys(-a),
=B = Lyya + Lyy(—a). (40)

However. rotational symmetry requires

Lysa=Lys. Lyss =Ly, (41)

This implies that y = 0. together with
B= Zzzzz" - L-'zznav -B= [-33220‘ - l:zz::"-
(42)

Adding the last two equations yields
Lyyyy = Lynys- (43)

We have therefore shown that under (38), the
transformation (28), with 8, = 0. reduces to

(832) = Lanpa (€32) + Lp3(€33), (44)
(833), = Lysna(€22), + Lasss(é33), (45)

which, together with (43), establishes the diagonal
symmetry of L in this case.

This concludes the proof of the diagonal sym-
metry of L. and thus also of the MT estimate of
L, for the systems considered in (I) and (1)

6. Consistency of the effective thermal strain tensor

We have shown in Section 3 that all denvations
of the effective thermal stress tensor / must satisfy
(20). Alternatively, it can be said that any model
should predict the same effective thermal tensor
either from (19), or by a direct application of the
model to Eq. (8),. A general proof of such con-
sistency property of the Mori-Tanaka method for
arbitrarily shaped coated inclusions seems to be
beyond reach. However, for the fibrous system
with cylindrical fibers considered in (I) and (II), a
consistency proof is given in the sequel.

First, note that Eq. (20) must hold for the
dilute approximation, i.e.

(I-TY)I + -:,-(fyrf(x) I(x)dV=i-L_t
(46)

Since the dilute approximation makes recourse to
an exact solution of the auxiliary problem, the
boundary conditions (12) and (13), together with
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(14) and (15), can be used (as in the derivation of
(20)) to show that (46) is in fact valid.

Next, we recall that the concentration factors
and influence function appearing in (20) are pre-
dicted in the framework of the Mor-Tanaka
method as follows:

A(x)= T(x)(cml+c,1')'l,

. 47)
iif‘-l_maf=t—l.t; (

this may be found in (II). Therefore, the require-
ment that Eq. (20) be satisfied by the MT model
reduces to

[1- (cml+c,TT)_‘TT]—llm

1 -1
+ g leal +¢TT) fV'TT(x) 1,(x) v

=1-Lt. (48)

Unfortunately, it does not seem possible to prove
that (46), by itself, implies validity of (48) for
general systems with curvilinear anisotropy.

Therefore, we focus on the fibrous systems
considered in (I) and (II) and prove the validity of
(48) by exploiting the idea of the “replacement
fiber,” established in (II) and also independently
by Hashin (1990). Under an axisymmetric stress
state, a circular cylindrical fiber possessing radial
or circumferential orthotropy can be replaced by
an equivalent transversely isotropic fiber. This has
no effect on either the average stress in the fiber,
or on the local displacement and traction fields at
its lateral surface. Therefore, the introduction of
the replacement fiber does not affect the average
strains and stresses in a fibrous system under a
uniform thermal change.

The T, ¢ and 7 tensors in (46) and (48) relate to
a single fiber in an infinite matrix under axisym-
metric loading. Since they describe the average
strain and stress within the fiber, they are not
affected by introduction of the replacement fiber.
Therefore,

T’ TR' ;-’-R’ ‘-'R' (49)

where the subscript R refers to the replacement
fiber.

Note also that Eq. (46) is valid in the present
circumstances, and write it first for the actual

fiber with curvilinear anisotropy and then for the
replacement fiber. From (49) it follows that

TT(x) I(x) dV =T (4o ;. (50)
4

where ({;)g is the thermal stress tensor of the
replacement fiber.

Coming back to Eq. (48). we recall that its
validity for the case of transversely isotropic fibers
has already been established in a recent paper by
Benveniste et al. (1991), and that under axisym-
metric loading the last term in (48) satisfies

where Ly is the effective modulus given by (25)
for a system with the “replacement fibers”. Re-
writing of (48) for the replacement fiber gives:

(1= (cnl + 1) '] 7,

+(c,,,l+c,T,I)_'[T,{(l,)RV,] ={ig — Lgtg.
- (52)

Finally, compare (52) and (48) to show that the
validity of (48) follows from (50); Q.E.D.
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Appendix

Consider a coated cylindrical fiber with a core
and coating which are cylindrically orthotropic.
Let the fiber cross section be circular, with the
core and outside radius being given by a and b. In
this Appendix we will illustrate the tensors L,(x)
and I (x) for this system, also also explain in
detail the procedure which leads to the representa-
tion of the A,(x), a,(x) and A,(x), &,(x)
tensors.

Since both the core and the coating are cylin-
drically orthotropic, the constitutive equations are
conveniently represented in terms of a cylindrical
coordinate system located at the center of the
fiber.

o\ e, Co C: O o o]
o, Cor Cop Co: O 0o 0
c. €, € €. O 0 0
o[ |0 © 0 G, 0 O
0., o o o0 o G, O
o,. o 0 o0 o0 0 G, |
¢, — aroo (s)
€, — a,b,
€. —a,b
x{ F_ 0V smc, g, (A1)
2¢,,
2‘:0
2¢,,

where ¢, ,, G,. G, and G,. are the stiffness coeffi-
cients, a, are the linear coefficients of thermal
expansion, and c denotes the core whereas g de-
notes the coating (see (II)). This constitutive equa-
tion will be formally represented as

o/(§)=L;(§) (§)+1(§) 6,. s=c.g.
(A.2)

where the primes indicate that all the quantities
are referred to the cylindrical coordinate system
which is now denoted by §.

Let the transformation between the current and
the Cartesian components of the fields at any
point within the fiber be described by

o,(x) =Ro/(§), (x)=Q¢(§) (A.3)

Note that R * Q since according to the conven-
tional use in the literature there is a 2-term in the
shear terms of the strain vector. In a transforma-
tion between the cylindrical and Cartesian sys-
tems, R and Q are functions of the angle ¢ and
therefore of the x,, x, Cartesian coordinates of
the generic point. For this specific transformation
it turns out that RT = @~'. Equations (A.2) and
(A.3), provide

o.(x)=R(x) L;Q07'(x) ¢,(x) + R(x) 16,
(A4)

so that we can write L,(x) and I(x) for the
coated fiber as follows:

Li(x)=R(x) L.Q7'(x) f(x)
+R(x) L@ (x)[1-/(x)].
L (x)=R(x) I[f,(x)+R(x);[1-f(x)].
(A.5)
with f,(x) being defined as

1, if x is in the core,
f,(x)={ e ) (A.6)
0, if x is in the coating.
Suppose now that the composite is subjected to
the boundary conditions (4), and the strain field in
a representative fiber is described in a polar coor-
dinate system located at the center of the fiber
through the influence functions A4.(§), a.(¢)

(§)=A(§)e+a;(£)6, s=c.g (A7)
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Using (A.3); and (A.7). we obtain the Cartesian
components of the strain:

€(x)=Q(x) 4;(x) g+ Q(x) a,(x) bo.

s=c. g (A-8)
where it is assumed that the components of the
polar coordinates § have been expressed in terms
of the Cartesian one x. Recalling the definition of

A, and a, in (9),. and taking an average of (A.8)
over the fiber (core and coating) provides

A= £ n[3 [0 4o as).

smC.g

(A9)
a= ¥ v,(-_%[so(x) a;(x)ds,).
s=C.8 ¢
where », is given by
v.=a’/b%, vs=(b2—az)/b2 (A.10)

and S, denotes the cross sectional area of the core
and coating. .
Turning to the 4, and Q, tensors, we write first
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the Cartesian stress either from (A.2). (A.7) and
(A.3),, or directly from (A.4) and (A.8) as
o(x)=R(x) L;A;(x) ¢

+[R(x) Lia;(x)+R(x) 1)6,.

(A.11)
where we have expressed again the the compo-
nents of £ in terms of x.

Finally taking an average of (A.11) over the
coated fiber and using the definition of 4, and &,
in (9), provides

A=Y vs(%fs'k(x) L A.(x)dS,|.

s=c.g

i= v ”’(%fslk(’) Llal(x) (A.12)

s=C.g
+R(x) 1] ds,)

Therefore once the influence functions A.(§),
a.(§) of (A.7) are known through the use of some
micromechanics model, substitution of (A.9) and
(A.12) in (8) provides the desired effective.tensors
L and L




J Mech. Phys. Solids Vol. 39. No 7. pp. 927-946, 1991. 0022-5096 91 $3 00+ 0 00
Printed 1n Great Bntain. C 1991 Pergamon Press plc
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ABSTRACT

THE EXISTENCE of diagonal symmetry in estimates of overall stiffness tensors of heterogeneous media is
examined for several micromechanical models. The dilute approximation gives symmetric estimates for all
matrix-based multiphase media. The Mori-Tanaka and the self-consistent methods do so for all two-phase
systems, but only for those multiphase systems where the dispersed inclusions have a similar shape
and alignment. However, the differential schemes associated with the self-consistent method can predict
diagonally symmetric overall stiffness and compliance for multiphase systems of arbitrary phase geometry.
A related question is raised about the equivalence of two possible approaches to evaluation of the overall
thermal stress and strain tensors. A direct estimate follows from each of the above models. whereas LEVIN's
results {Mechanics of Solids 2, 58 (1967)] permit an indirect evaluation in terms of the estimated overall
mechanical properties or concentration factors and phase thermoelastic moduli. These two results are
shown to coincide for those systems and models which return diagonally symmetric estimates of the overall
stiffness. Finally, model predictions of the overall elastic symmetry of composite media are discussed with
regard to the spatial distribution of the phases.

1. INTRODUCTION

IT 1s well known that under uniform thermomechanical static loads, statistically
homogeneous elastic composites can be regarded as macroscopically homogeneous
media characterized by an effective stiffness or compliance tensor, and by an effective
thermal stress or strain tensor. The reciprocal theorem of elasticity can be employed
to show that the exact effective stiffness and compliance tensors of an actual composite
must be diagonally symmetric if this property obtains in all constituent phases. How-
ever, the complex microstructural geometry of actual systems precludes an exact
evaluation of these tensors. Instead, various approximate procedures, such as the
dilute approximation, the self-consistent and Mori-Tanaka methods, and various
differential schemes are often used to estimate the overall stiffness or compliance in
terms of given phase moduli, volume fractions, and shapes. As they stand, these
procedures do not guarantee diagonal symmetry of the estimated stiffness tensors.

t Visiting from Department of Solid Mechanics, Materials and Structures, Faculty of Enginsering,
Tel-Aviv University, [srael.
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Trial calculations show that diagonal symmetry obtains in some systems and not in
others. and the micromechanics literature does not seem to offer any general guidelines
for an « priori idertification of systems which admit a !sgitimate application of a
particular approximate procedure.

A related problem arises in evaluation of the effective thermal tensors. These can
be tfound in two distinct ways. A direct approach would employ one of the approximate
methods to estimate these tensors. Alternatively, LEVIN's (1967) results can be used
to relate these tensors in an exact manner to the actual or estimated overall elastic
properties or mechanical concentration factors and to the known thermoelastic con-
stants of the phases. These two predictions should always coincide. but again. no
general proof of such coincidence appears to be available in the literature.

Although a given set of inclusions can be dispersed in a matrix to form aggregates
with many different spatial arrangements and corresponding overall elastic sym-
metries. some of the approximate methods predict the moduli and thermal expansion
coetficients of only one such aggregate. Again. it is not clear what might be the
underlving internal structure of this particular system, and how the shapes and elastic
properties of the phases influence its overall elastic symmetry.

The purpose of the present work is to offer some answers to these open questions. We
show that the dilute model gives diagonally symmetric estimates of overall mechanical
moduli tensors in all matrix-based heterogeneous systems. In contrast. the Mori-
Tanaka and the self-consistent models return such diagonally symmetric results only
for two-phase systems, and for those multiphase systems in which the dispersed phases
are aligned and of similar shape. However, the differential schemes which employ
successive dilute approximations. do always return a diagonally symmetric estimate
of the overall stiffness. The coincidence of the two approaches to evaluation of the
overall thermal stress and strain tensors is found to exist under similar circumstances.
Finally. the overall elastic symmetry of the Mori-Tanaka model is shown to be
determined by the lowest material and shape symmetry present among the phases.

[tis important to mention that approximate methods based on variational principles
should always vield a diagonally symmetric tensor ; see for example. the seif-consistent
schemes based on the Hashin-Shtrikman principle and the closely related self-con-
sistent quasicrystalline approximation (WiLLis, 1977, 1981, 1983. 1984). However. a
specific implementation of such an approach to multiphase composites with inclusions
of different shapes does not seem to exist at present.

2. SOME AVAILABLE RESULTS

We are concerned with the overall thermomechanical response of a representative
volume of a perfectly bonded multiphase composite aggregate which is subjected to
a uniform overall stress ¢ or strain ¢, and a uniform change in temperature 6. This is
defined by

o=Le+10, &¢=Mo+mb, (h

where L and M, and |, m, are the effective overall stiffness and compliance. and the
thermal stress and strain tensors. For consistency of (1), these must satisfy the relation
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L=M '"andl= —Lm. Following HiLL (1963) and LAwS (1973) one can show that
the overall properties are related to the local moduli and volume fractions by

A} A
L=L+Y c(L—L)A. M=M,+ Y (M ~M,)B. ()

v \
L+ Y el =1)+ ¥ c(L.—La.

Ay \
m=m +Y c(m-m)+ 3 (M -M)b,. (3)

‘s

where A.. B.. a,. b represent the concentration factors which are the averages of
certain influence functions to be defined below. and L,. M,. and I.. and m_ denote the
properties of phase s = 1,2,..., N: in matrix-based composites. s = | denotes the
matrix phase. These properties enter the phase constitutive relations as

o.(x) = Le(x)+16.(x). &(x)=M.(x)+m.0 (x). 4)

Those are similar to (1). but relates the local fields rather than their overall averages.
The local fields are connected to the overall average by certain mechanical and thermal
influence functions

£(x) = A (x)e+2a(x)0, 6,(x) = B.(x)a+b,(x)6. (5)

The phase averages g, and ¢, of the local fields satisfy analogous connections written
in terms of the mechanical and thermal concentration factors A, B.. a.. and b,, which
appear in (2) and (3) above. In this paper. local fields will be denoted by an argument
(x). and quantities without an argument will refer to averages.

The phase properties are assumed to satisfy the symmetry relations

n Gy 0wy (s) sy ___ ji)
ki = 1kl = Ll/lk - Lkh/' [I[ .= I[: .
[ - {s) __ )y __ t Oy 5)
Mkt = Mg = ytk = kiys My =m (6)

Also. both the influence functions in (5) and the concentration factors which are their
phase volume averages, must satisfy the symmetry conditions
()

[ 7 B— ts) __ [£3) s) o
At/kl - A/Ikl - Aljlkv a:j - au ]

= Bl = Bk, b =b, (7
but the diagonal symmetry relations are not necessarily satisfied : 4, # Aiy;, By #
B,

To lead into the main topic of the paper, we recall the reciprocal theorem of
elasticity. Suppose that a representative volume ¥ of a heterogeneous medium is
subjected to two different states of uniform overall stress ¢,, and a,;. or.conjugate
overall uniform strain &, and ¢;,, at 6 = 0. The actual local fields are denoted as ¢,,(x).
&(x). and a;,(x). &,,(x) : they satisfy the connections
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] 1
g, = if L,(x)e(x)dV = L. 0, = I—J- L,u(x)ec(X) dV = L, e (8)
$ ]

The theorem states that the two sets of local elastic fields satisfy the relation

j‘ 0,(x), (x)dV = j o,(x)e,(x) d}",
] ¥

or. since the boundary conditions are homogeneous
6,6, V=o0,,V. 9
This shows that L and M must also possess the symmetries indicated in (6). 1.e.

Lukl = L/:kl = L:/lk = Lkh/‘ Iu =1

I

BT = ‘w/:kl = Mulk = ‘Mkllp ml/ = m]:- (IO)

Moreover. LEVIN (1967) and RoseN and HAsHIN (1970) found that the tensors m
and I can be expressed as

v N

I=Y cAll, m= Y ¢Blm, an
v= s=1

or. since

Y

N
T cAT=1 Y B =1

y= 1 s=]

I=1,+ Y cA7(,=1). m=m,+ 3 c,B'(m,=m,). (12)

In two-phase systems. (2) indicates that the concentration factors A, and B, can be
replaced by overall L and M to yield

=1, +(L-L)L,-L)"'d:~1),
m=m +M-M)M,-M,)" "(m;—m,). (13)

BenveNisTE and Dvorak (1990) have recently established an exact relationship
between the thermal and mechanical influence functions in two-phase systems:

a,(x) = [I-A,(x))(L, =Ly "', -1,),
b,(x) = 1-B,(x)}(M,~M;) ' (m;—m,), (14)

which can be readily extended to concentration factors.

In any actual system, the influence functions in (5), or the phase concentration
factors are not known exactly. Instead, they are estimated by certain approximate
procedures. The dilute approximation, together with the Mori-Tanaka and the self-
consistent methods are often employed for this purpose. As they currently stand,
neither guarantees that the estimates of overall L and M will satisfy the symmetry
requirements (10).




Approximation of the effective stiffness tensor 931

The overall thermal tensors can be evaluated in two different ways. One approach
would employ the above estimates of A, and B, in (11) and (12). Alternatively, a, and
b, can be found directly from one of the above approximate procedures. and then
utilized in a direct evaluation of I and m in (3). Again. it is not clear that these two
approaches do always lead to the same result.

Therefore. one of the objectives of our inquiry is to find in which composite
systems do the approximate procedures for evaluation of A, and B, produce symmetric
estimates of L and M that satisfy (10). Also, we wish to establish when the direct
estimates of a,. b.. A, and B, lead to identical values of tand min (3) and (11) or (12).
respectively.

3. THEe DILUTE APPROXIMATION

A matrix-based multiphase medium is regarded here as a collection of non-inter-
acting inhomogeneities. Each inclusion of phase s = 2.3..... Vs considered in turn.
embedded in a large volume of matrix (s = 1) which is subjected to a uniform overall
strain €. The average strain in each such phase is defined in analogy to (5) as

g, =Te+t0. (15)

Since only two phases (s = 1 and s # 1) are involved in each application of (15),
one can use (14,) to write

tt=(I—Tx)(Ll—Ls)—l(|x—ll)- (16)

An estimate of the L tensor follows from (2) as

N
L=L,+Y c(L-L)T, (17)

se2

while the I tensor can be estimated either from (12,) as

N
I=1,+Y T, —1,). (18)
s=2
or from (16) and (3,) as
v N
= lI + Z cx(l;—ll)+ z C:(LS_LI)(I—Tt)(LI _Ls)_|(l3_ll)' (19)

We will now show that L in (17) satisfies the diagonal symmetry requirement in (10)
and that (18) and (19) give identical estimates of 1. Consider first the symmetry
properties of the product (L, —L,)T,. Recall that a single phase s # | is embedded in
a large volume D, of the matrix phase s = 1 which is subjected to a uniform overall
strain &, and 6 = 0. Suppose that two different overall strain states, ¢, and ¢, are
applied. The reciprocal theorem (9) then shows that

[dio)" +d.6)e; = [di(0)") +4d,(65) )e,,. (20

where d, = D,/D and d, = D,/D denote the matrix (s = 1) and inclusion volume
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th

fractions in the dilute configuration. D = D, + D _: the o)’ and ¢! are the averace
phase stresses. From (4) and the relation d\¢," + e’ = ¢, for the auxihary dilute
configuration it follows that

LVece, +d [L,— LTt = L e, +d (L = L T e (21)

This shows that the product (L, — L)T.. and therefore also the dilute approximation
of L in (17). are indeed diagonally svmmetric.

It is now easy to prove that the estimates (18) and (19) of L are equivalent. Rewrite
{19) in the for.~

i=h+Y «(L—L)T(L,-L) " =1) (22)

and recall that (L. - L,)T, ts symmetric: this provides the desired proof.

4. THE MORI-T . « METHOD
4.1, Summary of the method

Mori and Tanaka {1973) proposed the method in an attempt to find an estiniate
of matrix stress in a material containing precipitates with transtormation strains.
BENVENISTE (1987) reformulated the original approach. and more recently ( BENVEN-
ISTE. 1990) he established certain unifying connections with the model proposed by
LEvIN (1976) and the so-called closure approximation of lowest order of WiLLis
(1981). The method enjoys widespread use. For example. BENVENISTE and Dvorak
(1990). and BENVENISTE ¢t al. (1989) applied it to thermal stress problems in two-
phase and coated fiber systems. A comprehensive list of previous work on the Mori-
Tanaka method in composites can be found in these papers.

As in the dilute approximation. an inclusion of each phase s # | is regarded as a
solitary inhomogeneity in a large volume of matrix s = 1. However. the overall strain
applied to the matrix is no longer the actual overail strain ¢ in the aggregate : instead.
it is equal to the as yet unknown average matrix strain ¢,. Therefore. in place of (15).
the average phase strain is now equal to

¢, =Te +t6. (23)

Inasmuch as ¢ = X ¢.¢.. one can establish that

AY -1 Y
g = l:c‘,l+ Y (‘,T\] [s—-@ y c\t\].

N -1
A =T, [c,l+ Y (“T,:] .

y= 2

v -1 N
a=-T, [c.l+ Y c\T“| [ Yo t‘:l +1t,. (24)

2 - =2
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A substitution of the above A, into (2,) then gives the Mori-Tanaka estimate of the
overall suffness L as :

L=L.+[EckiL,—L.)T‘][c.lﬁ-zc‘T‘:l . (25

Al Ny -t
L= [ Y c\L\T.:H: v C)T‘:| . (26)
ve | v=1

where we used the identities

or ds

T, =1 t,=0 27

Consider next the estimates of I. The first option is to use A, in (11,) and after some
2lgebra find

R -1 IS
3] [3exn]

L.=1 =1

The second option is to substitute the direct estimate (24.,) of a, into (3,)

B v v
=L} -% c‘t\j| + Y a(Lt +1) (29)
- !

sa= |

with L taken [rom (26).

In the following paragraphs we show that the Mori-Tanaka estimates of L are
symmetric only for those multiphase composites where all phases s # | are of similar
shape. Also. we show that this property obtains in all two-phase systems. regardless
of phase geometry.

4.2. Aligned inclusions of similar shape
Write the concentration factor T, in the form
Tr=[l+P(L1-Ll)]_l- (30)

where P = P7 is related to the constraint tensor L* of a transformed homogeneous
inciusion by

L*=P'-L, (31

and hence there is aiso L* = (L*)". The background related to the det:nition of the
P tensor and associated concepts may be found in the comprehensive reviews by
WaLpoLE (1981) and WiLLis (1981). Of course, if the inclusion is of ellipsoidal shape.
then P = SL; ', in terms of the Eshelby tensor S. and the .train field inside such a
solitary inclusion is uniform. However, this restriction is not required in the analysis
which follows. What is required is that the tensor P be identical for all inclusions.
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Thus the inclusions may have any similar shape. but each must have thc same
orientation in a fixed reference frame.
In any event. since P is identical for all s % 1. (30) and (31) provides

T, =({L*+L) "(L*+L)). (32)

Substitute this into (26) and after some algebra find the following diagonally sym-
metric form of the Mori-Tanaka estimate of L (NORRIs, 1989)

v -1
L=[Zc,(L'+L,)“'] -L*. (33)

s= |

Next. we proceed to show that the estimates (28) and (29) of 1 are equivalent. Take
T, from (32). recall that L, and L* are both diagonally symmetric. and write (28) as

I=|:Zc,(L‘+L,)":|— [Zc\(L"+L,)"I,:|. (34)

ya } y=1
Modify now (29) by noting that t, in (16) can be rewritten with the help of (32) as
t, = —(L*+L) "L, -1) (35)

and substitute this together with L from (33) into (29). The result is

v - N
I=1+ [ Y c,(L‘+L‘)"] [ Y c,(L‘+L,)"(l,—I.)] (36)

s= ) s |

and. after expansion of the second bracket, it reduces to the form (34) which was
derived from (28).

4.3. Two-phase materials with inclusions of different shape

The two phases are denoted by the subscript r = 2, , where r = 2 denotes the
matrix. and r = B the dispersed phase which must have the same stiffness L; in a fixed
coordinate system. In an actual composite system. this last requirement is unlikely to
be satisfied unless the phase r = 8 is isotropic. The matrix phase resides in the region
s = 1, while the second phase occupies various regions s = 2,3...., NV of different
shape. For each such region there exists a certain tensor P’

It is convenient to introduce the tensor P: defined as

P'(L,~L,)P: = P;—P". 37)

Since P* = (P*)7, the definition shows that P = (P:)”. After some algebra, the tensor
T, in (30) assumes the form

T, =1+P}(L,-Ly). (38)

First, we ask if the overall stiffness L defined by (25) is diagonally symmetric in the
present system. Note that (25) can be rewritten as
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v N -t
L= L,+(L,—Lﬂ)<c,l— }: c,'l])( Z C;T,) . (39)
i E { /

v=

3=

then transformed into

N
L= L,,+C,(L,—L,;)( ¥ c\T‘> (40)
s=1

and with reference to (38) cast into the final form

\ -1
L=L,,+c,[zc\(L,—-L,,)"+P;] . (41
s= 1
which shows that indeed L = L7.
Next. let us examine for the present system the two forms of | given by (28) and
(29). If (38) is used in (28) together withl, = I;for s # 1. then after much manipulation
I becomes

v -1
= l,,+c,[ Y c,[(L,-L,,)"+P;]] (L,—Lg) ‘(1 —ly). (42)
3=

On the other hand, if the identity t, = 0 is used in (29), it follows that

N N
I=L [~ Y c‘ts] +a, (L=l + Y c,(Lgt, + 1), (43)
3 y= 1

=]
where t. can be evaluated from (16) with T, taken from (38)
t, = Pi(l,—1p). (44)

Then. with L from (41), | becomes

Y =1 N
| I {[ Y ol(L,—Lg~! +P;]] [ Yy c,P;] —I} (L ). (45)
s=1

= s=

This can be cast into a form which is identical with (42). in the derivation it is
helpful to write the identity tensor in (45) as

I= { Z ol(L,~Lg) ™! +Pj]]_ [ i o[(L,—-Ly~" +P;]]. (46)

5=

4.4, Multiphase systems with inclusions of different shape

In composites of this kind, where in each phase both the phase stiffness L, and the
tensor P* vary with s, one can show that the overall L in (26) is generaily not
symmetric, and that (28) and (29) lead to different results. An analytic proof appears
to be cumbersome, but the said properties can be conclusively demonstrated by a
numerical example. To this end we consider a specific three-phase material consisting
of a Ti Al matrix (phase 1), carbon circular disc (phase 2), with the normal of the
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plane face of the disc in the direction x. of a Cartesian coordinate system. and
continuous SiC fibers of circular cross-section (phase 3). aligned with .. Each phase
is assumed to be 1sotropic. The phase modult and volume fractions were selected as

E =963GPa. G, =37.1GPa. x =925x10 ~ C. ¢ =055
E.=344GPa. G.=143GPa. 2. =333x10 ° C. ¢. =025
E.=43.0GPa. G.=1720GPa. x. =3486x10 " C. (. =02 (47

The above constants give the following values of the coefficients of the (6 x 6) and
{6 x 1) matrices defined by (26). and (28), (29). respectively

12362 4384 3589 0 0 0 ]
4384 12362 3589 0 0
2189 2189 12405 0 0
L=1 o 0 o 3304 o o |OF% (48)
0 0 0 0 3304 0
0 0 0 0 0 3989

I=(—0.14185. —0.14185. —0.12880.0.0.0)" x 10" *GPa C [from Eq. (28)].

= (—0.14970, —0.14970. —0.08167.0.0.0)" x 10 “GPa C [from Eq. (29)].

The example shows that L is not symmetric, and that the 1 in (28) is different from
Lin (29).

We note that the only exception to this conclusion has been observed so far in
systems where the phases 2 and 3 are combined in a coated fiber which is embedded
in a continuous matrix (BENVENISTE et al.. 1989). In such systems. the tensors T, and
t. of phases s = 2.3 are obtained from an exact solution of an elasticity problem in
which the coated fiber resides in a large volume of matrix which is loaded by an overall
stress @, or strain ¢,. and by a uniform temperature change 6. Clearly. this exact
solution guarantees that the overall stiffness predicted by the dilute approximation of
Section 3 is symmetric. A similar proof has not yet been established for the Morni-
Tanaka method. but several numerical realizations of this method have consistently
returned diagonally symmetric Mori-Tanaka estimates of L. as well as agreements
between (28) and (29). CHEN et al. (1990) obtained such results even for systems
reinforced with cylindrically orthotropic fibers and transversely isotropic coatings in
a transversely isotropic matrix.

5. THE SELF-CONSISTENT APPROXIMATION

5.1. Rerview of the method

This well known procedure has its origins in the work of BRUGGEMAN (1935) who
used it to study conductivity of composites, HERSHEY (1954) and KRONER (1958) who
applied it to polycrystals, and Bubiansky (1965) and HiLL (1965) who formulated
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the method for composite aggregates: see also the reviews of WaLPOLE {1981). and
WiLLIS (1981) for further insights on the method.

In the theory. particle interaction is taken into account by assuming that an inclusion
of each phase is embedded in an effective medium of initially unknown properties. As
in the Mon-Tanaka method. mechanical and thermal concentration factors are
derived from the solution of a dilute problem. but the solitary inclusion is now
assumed to be bonded to a large volume of the effective medium of as vet unknown
cffective L and 1. which is loaded by the actual overall stress o or strain ¢. and the
temperature change 6.

The effective suffness is again given by (2)

\
L=L+ Y (L. —L)A..

=2

where the tensor A is now the actual concentration factor
A =[1+P(L -L)] ' (49)
and
P = (L*+L) ' (50)

is a function of the overall moduli. but its form depends on the shape of the inclusions
s. When used in (49) and then substituted into (2,). this gives a system of nonlinear
algebraic equations for the coefficients of L. Explicit solutions have been obtained
only for some common two-phase systems (HiLL. 1965; WaLPOLE. 1969). but a
numerical procedure must be employed for more complex material combinations.

Once L 1s known. the effective therinal stress tensor 1 follows either from (12,). or
from (3,) with a, given by the expression

a, =(I-A)}L-L)"'(.=D. (51

[t is interesting to observe that if L is known. the first alternative [(12,) and (49)]
provides an explicit expression for 1. whereas the second one {(3,). (49) and (51)] gives
a linear algebraic equation for L.

Again. two questions need to be answered. One pertains to the diagonal symmetry
of the predicted L. the other to the equivalence of the two alternative evaluations of
1. The first question can not be answered analytically for all systems. and numerical
examples must be used instead. In any event. we show that the self-consistent pre-
diction of L is symmetric in the same circumstances as the Mori-Tanaka prediction.
The second question can be answered analytically. As in the Mori-Tanaka method,
one obtains an affirmative answer for systems in Sections 4.2 and 4.3 when L = L'.
However, in multiphase materials with different P* and L, the two predictions of }
would be different even if the overall L were symmetric.

For convenience, we first consider the multiphase systems of Section 4.4, and then
the case of aligned inclusions and the two-phase systems.
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3.2, Multiphase svstems of any phase geometry

A numerical example will show that the method does not predict a symmetric
overall stiffness tensor for this system. The numerical evaluation of L employs the
following tterative procedure. In the first step. P' is found in terms of the matrix
moduli L,. i.e.. as in the dilute approximation. and denoted by (P'), : the subscript
(1) refers to the first step. This is used in (49) and (2,) to evaluate the first approxi-
mation of L. denoted by (L),. In the second step. P’ is evaluated as a function of the
new (L) . and used again in (49) and (2,) to find the next approximation (L) of L.
This 13 continued until a selected convergence criterion is satisfied.

Phase properties are selected as in Eq. (47). Again. phase | is the matrix. phase 2
has the shape of circular disc. and phase 3 forms aligned cylindrical fibers. The
described iterative procedure gave the following results in steps . 2. and 23 when
convergence was reached

(11846 3947 245 0 0 0 7
3947 11846 2459 0 0 0
2459 2459 12260 0 0 0
L=1 0 0 319 o o |SP=
0 0 0 0 319 0
0 0 0 0 0 3950]
(12647 4698 2280 0 0 0
4698 12645 2280 0 0 0
4245 4245 12513 0 0 0
L= 0 o 38 o o |CGF
0 0 0 0 328 0
0 0 0o o0 0 3975
12385 4402 204 0 0 0 ]
4412 12392 204 0 0 0
3597 3597 12409 0 0 0
L= 0 o 327 o o |GP2 I
0 0 0 0 3274 0
0 0 0 0 0 3987]

which clearly shows lack of symmetry of the predicted L. Note that even the second
iteration gives a nonsymmetric (L).. However. this does not interfere with evaluation
of (P*),. because the coefficients L,,, L.;. L,,. and L,, are not involved.

We emphasize that the performance of the method must be evaluated for each
particular application. For example, the above conclusion may not be reached in
coated fiber composites. or in other three-phase systems where the interaction of two
of the phases is evaluated from the solution of an exact elasticity problem.




Approximation of the effective suffness tensor 939

Consider next the two alternatives in evaluation of the overall thermal stress tensor
I. The result {52) notwithstanding, we assume that the self-consistent estimate of the
overall stiffness L is diagonally symmetric. The first alternative is suggested by (12)).
with A, given by (49). If (50) is substituted into (49), then

A= (L*+L,) "(L*+L) (53)

and (12,) then becomes
’ 5
l=|.+Zc\(L:'+L)(L:*+L‘)"(l,—l|). (54)
In the second alternative, 1 is found from (3,). (51) and (53) as

N N
I=h+3 o—1)+ Y o(L,~L)(LH+L) (-1 (55)

To compare the last two forms, we recall the identity =, ,c,A, = [ and use (53) to
define the tensor L¥ by

AY \
YeA, =Y c(Lr+L) (L+L) =L (56)
y= | y=1
This helps to reduce (54) to the form

AJ

1= Y (LA L)L*+L) 'L (57)

a=1
and then to

N

v -1 .
l= [ ZI c(L¥+LYL¥+L,)" '] [ ZI LM+ LYL¥+L)"™ 'L]- (58)

In contrast, (56) and some algebra eventually convert (55) to the form

N -1 N
l = [ Z CS(LI‘+L1)(L:‘+L:)_1] [ Z C,(L?‘f‘L])(L,“*‘L,)_‘I,], (59)

s=\ s=1

which is different from (58). Thus we conclude that even if L were diagonally
symmetric, the self-consistent method would still provide two conflicting estimates of
I for general multiphase aggregates.

It should be noted here that in three-phase fibrous systems with arbitrary transverse
phase geometry, the effective thermal tensor 1 can be found exactly in terms of the
overall and local stiffnesses and volume fractions (Dvorak and CHEN, 1989). It
remains to be verified, however, whether the use of the self-consistent method in
conjunction with this result would coincide with its direct application to such systems.

5.3. Aligned inclusions of similar shape

In systems of this kind, all inclusions have the same constraint tensor L} = L*. For
example, each grain in a polycrystalline aggregate may be regarded as a spherical
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inclusion in an effective medium. However. in matrix-based composites reinforced by
inclusions of the same shape and alignment. there is L*= L* for the inclusions
s=2... V. while L*of the matrix (s = 1) needs to be determined. Following HitL

(1965). we write

6,—a=L%e—¢,). fors=1.

o —06=L*e—¢) fors=2...... v (60)
and
\ AY
Yo —e)=0. Y cfe,—28)=0. {61)

v= 1 v=1

Substitute from (60) into (61,) and use (61-) to find
c(L¥=L*)(e~&) =0
and
LY=L* (62)
Therefore. in composites of this kind the seif-consistent method makes no distinction
between the constraint tensors of the matrix and other inclusions. In this sense. all

phases are admitted on the same footing.
It now follows that for the present system. the strain concentration factor (49) is

A =[I+P(L.—L)] '. fors=1..... N. (63)
where P = (L*+L) '. This can be used to write
A =(L*+L) "(L*+L) or A =I+P(L-L). (64)
where. as in (37)
P-P=PL-L)P.

Now that all strain concentration factors are known. we invoke the identity (56) and
establish that

N
Y (L*+L) '"(L*+L) =1 (65)
v=
and
v

Y el+P(L-L)] =1L (66)

v |

Equation (65) can be recast as

\ i -1
L=[zamw¢ml —L*. (67)

which provides an implicit form of L. According to the definition, L* = (L*)". hence
it follows that L = L'.
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An alternative form of L may be tound when (2) is converted into the form
£ ¢ L A =L, and together with (64.) it is utilized in finding

AY AY
L= Z('\L\-(»Sc"L\P.(L—L\). 168)
| |

Now. multiply the left-hand side of (66) by — L. add the result to (68). and recover

L=

-

c¢L.=Y ¢(L=L)P(L-L)). (69)
I v=

According to the definition (37). P, = P’ hence it follows that L = L’. This agrees
with WALPOLE's (1981) self-consistent result for polycrystals. but in the present context
the validity of the formula has been expanded to matrix-based systems reinforced by
inclusions of the same shape and alignment. Equation (69) coincides with the several
variants of the self-consistent approximation pointed out by WiLLis (1981). when all
the particles are of the same shape and alignment. and the matnx itself s also
embedded under the same shape as the particles.

The overall thermal stress tensor | is evaluated in the two ways indicated by say.
(57) and (59). However, the existence of a single L* for all phases guarantees that
(57) can be written as

\
I=(L*+L) ¥ c(L*+L) 'l (70)
v=

and the same form is recovered from (59) with the help of (56).

The prediction of | are therefore consistent; this was also observed by Laws
{1973). Of course, in both cases the consistency holds if the predicted L is diagonaliy
symmetric.

5.4. Two-phase materials with inclusions of different shape

Recall that systems of this type may have an arbitrary phase geometry. but that
the matertal axes in each phase must be fixed. As in (37). (38). and (44). there is

a, =P(l-1)
P(L-L,)P, =P,—P. s=23..... N.
A, =1+P}(L-Ly). (7

Only a numerical evaluation of L will be presented with the phase properties in
(47). Phase | is used as matrix. and phase 3 is present as fibers and circular discs. The
first. second and the final, ninth iteration give the following estimates of L:
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24570 8788 7107 0 0 0 ]
8788 24570 7107 0 0 0
7107 7107 2460 0 0 0
=1 0 0 s39s o o |GPa
0 0 0 0 5395 0
.0 0 0 0 0 7891
(26575 9377 7979 0 0 0 7
9377 26595 7979 0 0 0
79.55 7955 2438 0 0 0
L= 0 o ess o o |SP
0 0 0 0 6056 0
| O 0 0 0 0 8599 |
(26995 9545 8280 0 0 0 ]
9545 26995 8260 0 0 0
8280 8280 24924 0 0 0
L)y =1 0 0 6444 o o |GP2 0D
0 0 0 0 6444 0
0 0 0 0 0 8725

which converges to a symmetric L.
The first alternative evaluation of t follows from (3,). where we take a, from (71,).
This yields

v -1 v
1= [l—(Lﬂ—L,)< S c,Pi)} [c,l,+(] —e Mg —(Ls—L,) ( Y c,P;)I,,]. (73)

The second alternative follows from (12,) with A, from (71.). This eventually
becomes

V=cl+(1—c)lg+(L—-Lg) [ 2 C‘P;] (-1, (74)

s=2

where L was assumed to be diagonally symmetric.
To show that (73) and (74) are equivalent, write L in the following form

N
L= C,L,+C3L5+(L5—L,)[ Z C‘P;] (L-‘Lp), (75)
which follows from (2,) with A, from (71,). Solve this for (L —L,). and substitute
into (74) to convert this equation into a form which coincides with (73). This proves
the required consistency.
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6. THE DIFFERENTIAL SCHEME

An alternative to the direct evaluation of overall properties by the self-consistent
or Mon-Tanaka methods is offered by various differential schemes (ROSCOE. 1952 ;
BoucHER, 1974: MCLAUGHLIN, 1977: CLEARY er al.. 1980: Norrits. 1985). In
principle. such schemes evaluate the final overall properties in many steps which
involve removal of a small part of the current material volume. and its replacement
by one or more of the inclusion phases. For example. an unreinforced matrix may
serve as a starting point. A small volume is removed and replaced by one or more
solitary inclusions of the other phases. The replacement starts with initial inclusions
in the matrix. and is then incrementally repeated in the instantaneous effective medium.
The process is repeated until the final volume fractions of all phases are reached.

Many specific procedures have been proposed, and the final outcome tends to
depend on the path or removal replacement sequence leading to the final material
configuration. However. as long as the dilute approximation is employed at each
step of the process. the predicted intermediate and final effective stiffness must be
diagonally symmetric. In contrast to the Mori-Tanaka and self-consistent methods.
the differential schemes may predict symmetric overall stiffness even for multiphase
systems with inclusions of different shape.

As an illustration, we choose the procedure suggested by MCLAUGHLIN (1977). and
extend it to a matrix-based (s = 1), three-phase composite. The overall stiffness is
given by the following set of coupled nonlinear ordinary differential equations

dL dC: dCJ
dec = (m(Lg—L)E:+ m(LJ_L)E3~ (76)
E. =[I+P(L.—L)) '=1+P(L-L,), fors=2.3, 7

with the initial condition L = L, at ¢ = 0.

Here. L is the unknown overall stiffness, L, are known phase properties, ¢ = X3¢,
is the volume fraction of the inclusion phase. and the E, define the intermediate strain
concentration factors of the inclusion phases 2 and 3. Both inclusion phases may have
different moduli and shape, but P, and P, are diagonally symmetric, as in (64). After
substitution from (77) into (76) and rearrangement one finds

dL 1 } (dec,
de (l—c)\z (&

=2

(L,—L)+(L,—L)P)(L—L,)). (78)

which suggests that each successive L will be diagonally symmetric, as long as the
initial L = L, is diagonally symmetric. It can be proved that the formulation proposed
by Nornris (1985), will also lead to the same conclusion (CHEN, 1990).

7. OVERALL MATERIAL SYMMETRY

Now that we have established some of the conditions which guarantee the diagonal
symmetry of the various estimates of the overall stiffness, we proceed to examine the
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elastic ssmmetry implied by these estimates. The motive 1s probubly obvious. In
any actual ssstem. a given set ol phases can be arranged in many different spatial
configurations which may determine the overall raaterial symmetry of the system.
However. the dilute approximation and the Mori-Tanaka method are not expheitly
concerned with the actual distnibution of the phases. Indeed. tnrough the dilute
configuration which they typically employ. they focus on a single phase in a matrix.
Theretore. 1t 1s of interest to find the overall matenal ssmmetries which are. or can
be actually represented by the estimates.

To muke progress. we first summarize the expressions which give an explicit estimate
of L. In the dilute approximation. L follows from (17). with

T =[I+P(L-L,)] ". (79)

where P = SL, '. so that

LU!L =L|+S(“L‘—L-) “'P.] “. (\\‘0)
In the Mon- Tanaka (MT) method. for systems with aligned inclusions of similar
shape (P = P)n Section 4.20 Eq. (33) gives the result

N '
[‘\“':[Z('(L“"L\) ] _L‘. (8|)
P

where [Eq. (31)]
L*=P '-L,;.

For two-phase systems of any geometry. Section 4.3. there is [Eq. (41)]

Lur = L/g+t',[ S ctL, =L i +P;]

where P, follows from (37) in the form
P; =[(P)) I_(L!_Lu)] l' (SZl

These explicit esimates indicate that. in the two cases. the material ssmmetry of L
will coincide with the lowest symmetry or with the “highest anisotropy ™ found 1n any
phase sufiness L and in the tensor P*, when all are written in a fixed overall coordinate
system. For example. if L, is at most transversely 1sotropic. and the siructure ot P
resembles an orthotropic symmetry. then L is orthotropic. Similar conclusions can be
verified for the tensor I. However. there is no assurance that the estimates will reflect
the effect that some special arrangement of the phases. e.g.. in a cubic array. may
have on the relative magnitude of some coefficients of L ; all such magnitudes follow
directly from the respective expressions. In other words. each estimate provides
information on the stiffness of only one of the many different systems which couid be
actuaily constructed from the same collection of phases and shapes. The outcome
follows directly from the above expressions. it depends only on the prescribed magni-
tudes of ¢,. L,, and P*, and it does not reveal the internal structure of this particular
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system. Since no relevant information can be introduced. one may speculate that this
system will have the most random arrangement of the phases permitted by the
constraints that may be imposed by L and P.

As far as the self-consistent model is concerned. a variant of this method in which
a certain periodic spatial distribution of inclusions is incorporated has recently been
formulated by Fassi-FEHRI er al. (1989). In principle. the spatial distribution of
patticles can be incorporated into a micromechanics model through some statistical
information : see the review papers by WiLtis (1981, 1983). However an implemen-
tation of such an approach to a specific system remains to be accomplished.
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On a Correspondence Between Mechanical and
Thermal Effects in Two-Phase Composites

Y. BENVENISTE® and G. J. Dvorax
Department of Civil Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180-3590, U.S.A.

Abstract

This paper considers the thermomechanical loading problem of binary composites
with any anisotropic elastic constituents and arbitrary phase geometry, subjected to
homogeneous traction or displacement boundary conditions and uniform temperature
change. It is shown that the solution of the thermomechanical problem is uniquely
determined by the solution of the purely mechanical problem corresponding to zero
temperature change. This result is used 10 obtain explicit relations between the effective
thermal strain (or siress) coefficient tensor and the effective mechanical propertiss. The
correspondence between thermomechanical and purely mechanical loads is also used
1o establish an important consistency property of the Mori-Tanaka model in the
context of thermomechanical problems. Extensions of the results to composite systems
with temperature-dependent properties is discussed.

1. Introductios

In recent papers, Dvorak (1983, 1986) has shown that for certain binary
composites subjected 10 combined thermomechanical loading, the local
thermal strain and stress conceatration factors can be related in an exact
way (o the corresponding mechanical concentration factors. The considered
systems were effectively isotropic binary composites with elastically isotropic
phase but arbitrary phase geometry, and fibrous composites with elastically
isotropic or transversely isotropic constituents of any cross section but of
cylindrical geometry. The correspondence established in that paper between
the concentration factors allows us (0 write expressions for the effective
thermal expansion coeflicients once the effective mechanical properties are
known. Moreover, the derivation is made in a manner which makes the resuits
applicable 10 inelastic sysiems.

The present paper generalizes the resuits obtained by Dvorak (1986) to

* On sabbetical leave from Tel-Aviv University.
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binary composites with general anisotropic constituents and arbitrary phase
geometry. The established results are then used to prove an important consis-
tency property of the Mori-Tanaka micromechanics model in the context of
thermomechanical problems.

In the second section of the paper the correspondence relations between
thermomechanical problems and pure mechanical problems are obtained in
a closed and simple form. Two types of loadings are considered:

(a) A combined thermomechanical loading with homogeneous traction
boundary conditions and uniform temperature change (Equation (2.4)).

(b) A combined thermomechanical loading with homogeneous displacement
boundary conditions and uniform temperature change (Equation (2.5)).

The purely mechanical problems are those corresponding to a zero tem-
perature change.

The third section of the paper is concerned with evaluation of the tensor of
effective thermal strain coeflicients (thermal expansion) and the tensor of
effective thermal stress coefficients, a subject which has drawn considerable
interest in the literature in the last two decades. In a well-known paper, Levin
(1967) has shown that in two-phase materials with arbitrary phase geometry
the effective thermal expansion coefficients can be related to the effective
elastic properties. This line of inquiry was extended by Schapery (1968), who
derived bounds on thermal expansion coefficients of multiphase composites
with isotropic phases, while Rosen and Hashin (1970) reviewed and extended
Levin's result to general anisotropic phases. Laws (1973), on the other hand,
has given a different treatment of the subject based on thermostatic considera-
tions. We finally mention Craft and Christensen (1981) who considered the
thermal expansion of composites with randomly oriented fibers. We show in
the third section of the paper that the principle established in the second
section aliows a straightforward and elegant derivation of the results of Rosen
and Hashin (1970) and Laws (1973). A dual formulation corresponding to zero
traction or zero displacement boundary conditions is presented, resuiting in
expressions for the eflective thermal strain and stress coefficient tensors.

The lourth section of the paper is concerned with the Mori-Tanaka (1973)
model of composites in the context of thermomechanical problems. There
exist several papers in the literature which predict the effective thermal coeffi-
cients of particulate composites by using the average matrix stress (or strain)
concept of Mori and Tanaka (1973) (see Wakashima et al., 1974; Takahashi
et al., 1985; Takso, 198S; Takso and Taya, 1985). These works base their
denvation directly on eigenstrain concepts and the equivalent inclusion idea
of Eshelby (1957), and do not make use of the results of Levin (1967) and Rosen
and Hashin (1970). This section of the paper gives a concise derivation of
the Mori-Tanaka micromechanics problem in the context of the thermo-
mechanical properties, in the spirit of the exposition of this theory by Ben-
veniste (1987) which dealt with the purely mechanical case. The correspon-
dence relations established in the previous sections are then used to prove an
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important consistency property of this micromechanical mode. Specifically,
we show that the direct application of the model to the prediction of the
effective thermal coefficients produces results which are in agreement with
those that would have been obtained if the relations of Levin (1967) and Rosen
and Hashin (1970) were used.

The paper concludes with some comments on applications of the results to
composite systems with temperature-dependent properties.

2. Correspondence of Overall Mechasnical and Thermomechanical Loading

Consider a two-phase composite consisting of perfectly bonded anisotropic
constituents of arbitrary phase geometry such that the orientation of the
respective material axes in each of the phases is fixed throughout the aggregate.
Let the thermoelastic constitutive relations of the homogeneous phases, r =
1, 2, be given by

o, =L + 16, 1)
¢, =M, +m,0, (2.2

where L, and M, = (L,)"! are the phase stiffness and cumpliance tensors, m,
is the thermal strain vector (of expansion coefficients), and I, the thermal stress

vector, such that
L= -Lm,. (2.3)

Define the following thermomechanical loading problems for a representa-
tive volume ¥ of the composite sggregate:

Problem1

0,(5) = aon, 8(S) = 6,. 2.4)
Problem 11

u(S) =eox,  6(S) =6, 2.9)

where 9,(S) and u(S) are the traction and displacement vectors at the external
boundary S of ¥, with an outer unit normal w, 8, and ¢, are constant uniform
overall stress and strain lieids, and x denotes a Cartesian coordinate; 8(S) is
the thermal change at S, and 6, is a constant quaatity.

Note first that the uniform field 6(x) = 8, in the volume ¥ is the stationary
temperature distribution that satisfies the boundary conditions ((2.4,), (2.5,)).
The local stresses and strains in the phase, which are caused, respectively, by
the prescribed boundary conditions (2.4) and (2.5), can be written in the form

o,(x) = B,(x)ey + b,(x)6,, (26)

&,(x) = A (x)eq + 8,(x)6,. n

In the above equations, A,(x) and B,(x) are fourth-order tensors; their phase
volume averages in a representative volume, A, and B, are usuaily called the
mechanical strain and stress concentration factor tensors. The second-order

and
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tensors 8,(x) and b,(x), have representative phase volume averages a, and b,
which are calied the thermal strain and stress concentration factors. These
tensors without the argument x will denote average quantities in the sequel
of the paper.

We will now show that for statistically homogeneous two-phase compo-
sites with distinct anisotropic constituents and completely arbitrary phase
geometry, the tensor b,(x) can be uniquely determined in terms of B,(x), M,,
and m,. A similar relation will be derived between a,(x) and the tensors A,(x),
L,. and L. These results will be obtained from the decomposition procedure
proposed by Dvorak (1986, Sect. 3), which is extended here to systems with
arbitrary phase anisotropy.

Consider first Problem I, Equation (2.4). By linearity, the effect of 6, can be
determined separately, and is in fact represented by b,(x) in (2.6). This tensor
can be evaluated from the following decomposition scheme:

(a) The phases are separated from each other and subjected to a uniform
temperature rise 8, which causes the uniform strains

¢, =m,f, ¢;=m,6, 2.8)

and zero stresses.
(b) Certain unknown tractions derived from an auxiliary uniform stress field

8,(x) = 8,(x) = &, 29)

are applied to each phase such that the uniform strains caused by (2.8)
and (2.9) make the phases compatibie. This condition is met by demanding
that

M,;8 +m, 0, = M8 + m,b,. (210

Therelore,
¢=M,; - M:)_.‘(.z - -,)90- (211

providing that the inverse exists. A discussion of this proviso appears in
Appendix A.

() In the final step of the decomposition procedure, overall tractions —&s
are applied at S to cancel the tractions introduced there in step (b). By
superposition and with regard to the definition (2.6) of B,(x), the tensor
b,(x) can now be written in the desired form

b,(x) = [1 - B,(x)](M, - M,)"'(m; ~ m,), @12
where 1 is the fourth-order unit tensor defined by
Ly = 08y + 8u5p), (2.13)
with 3, being the Kronecker delta.

Consider next the thermal loading Problem 11, Equation (2.5). The solution
follows again from the above decomposition which remains unchanged except
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for the conditions (2.9) and (2.10) which are now replaced by the forms

£,(x) = &;(x) = ¢, (2149
Lt +1,6,=L,t +1,6, (2.15)

The uniform auxiliary strain field then follows as
¢=(L, -L;)"'(Q; - 1,)6,. (2.16)

The last step (c) of the procedure is now implemented by applying on S the
displacement field

8,(5) = —&x. 217
That leads to the final expression for a,(x)
a,(x) = [1 - A,(0)](L, = L,)"'(; - 1,). (2.18)

For the special case of a binary composite made of isotropic constituents,
(2.12) and (2.18) can be reduced to the expressions for thermal stress and strain
concentration factors given, respectively, by Dvorak (1986), equations (38)
and (40). For fibrous composites with two transversely isotropic phases, the
original decomposition procedure allows the imposition of an additional
relation between phase stress or strain averages, such as equation (11) in the
1986 paper. Such additical relations cannot be prescribed in the present case
of arbitrary phase geometry. We note, however, that the original and the
present procedures coincide if we choose the additional constraint to be in
agreement with (2.9) above, i.c., as do{ = do§ (using the notation of the 1986
paper). We also note that (2.12) and (2.18) are analogous to the relations
between mechanical and thermal microstress fieids in fibrous composites
consisting of three cylindrical transversely isotropic phases, which were recently
derived by Dvorak and Chen (1988).

3. Effective Thermal Expaasion Coeflicients

We now utilize the above decomposition procedure in a derivation of the
overall thermal expansion coefficients of binary composites with anisotropic
phases.

The effective constitutive law of a heterogeneous thermoelastic medium can
be written in the form

t=M3+md, s=Llz+lh 3.1)
with
l= -Lm, Ms=L", 3.2

where the overbars denote representative volume averages of the stress or
strain fields, M. L are the effective overall compliance and stiffness tensors
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given by Hill (1963) as
M= cIMl Bl + CgMsz, L= ClLlA‘ -+ CszA;, (3.3)
where ¢, are the constituent volume [ractions, and m and } in (3.1) and (3.2)
are the overall thermal strain and thermal stress tensors. It is again recalled
that B, and A, are representative phase volume averages of the fields B,(x),
A,(x) defined in (2.6) and (2.7), respectively.
Consider first a special form of Problem 1, Equation (2.4), in which ¢, = 0.
Since in this case 3 = 0 and 8 = 6,, we find from (3.1,) that
mb, =T = c,¢, + C;38;, 3.4)
where ¢,, ¢; are phase volume averages of local strains ¢,(x) and £;(x)
Substitution of (2.12) into (2.6) with ¢, = 9, and the result in (2.2) provides
¢, = M,(1 - B,)JM, — M,)"'(m; — m,)6,. (3.5
Equations (3.5), (3.4), and (3.3), finally give the overall thermal strain
tensor m
mw=c,m +C,M; + (M - C;M‘ b CzMz}(M, - M;)‘l(-l - 3). (3.6)
which is precisely equation (2.2) in Rosen and Hashin (1970). It is interesting
to observe that in this process of substitution, B, and B, combine in the
manner of (3.3,) into the overall property M. Equivalent forms of (3.6) which
can be arrived at after some manipulation are
m=m, + M, - MM, - M,)" (m, -m,), (3.7
and the symmetric form
m=(M-M,;)M, -M;)"'m, + M ~-M,)M, - M,)"'m,. (3.8)
We now turn to Problem I1, Equation (2.5), and seek the solution for gy = 0.
Equation (3.1,) provides
B, =a=c,e +c30,, (39)
where 0, and @, are phase volume averages of e,(x) and 6;(x), respectively.
This, together with (2.18) and (2.7) at &, = 0, and (2.1) with (3.3,) yields
Il= C|'| + C:l: + a- -y L‘ - CgL:)(Ll - Lg)-‘(h - '3). (3.10)
The equivalent forms are
=}, +@, -LL; -L,)'q; - 1), 311
' = (L - Lg)(lq - La)-'h -+ (L - L‘)(Lj - L.)-‘|3. (3.‘2)

Laws (1973) derived this last formula in a diflerent way.

Using (2.3) and (3.2,), we can verify that m and | as given by (3.6) and (3.10),
or by their equivalent forms, satisfy (3.2,).

Special forms of (3.6) and (3.10) for fibrous and perticulate composites were
given by equations (26), (29), (37), and (39) in Dvorak’s (1986) paper.
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The direct derivation of the overall thermal strain and stress tensors m and
L from the above relations between thermal and mechanical concentration
factors. implies that these tensors can be found once the effective mechanical
properties have been predicted by a certain micromechanical model. However,
a valid question to ask is whether the model, if used to estimate the effective
thermal strain and stress tensors directly, would give the predictions that
coincide with those found from (3.6) and (3.10). The following section estab-
lishes such consistency for the Mori-Tanaka model.

4. Applicstion of the Mori-Tansks Method to Thermoelastic Problems

4.1. Review of the Method and Principal Results

We start by giving a concise summary of this model, in the framework of its
application to purely mechanical problems, as presented by Benveniste (1987).

Consider the loading configuration of Problem !, Equation (2.4), with
0o = 0. In this case, & = @, hence we have

B, +c,;B, =], (4.1)
which, when combined with (3.3,), results in
M=M, +c;(M; - M,)B,, (42)

50 that we need to know B, (or B, ) to determine M.
Similarly, in Problem 11, Equation (2.5), with 8, = 0 there is T = ¢y, hence

CIAI + C;A’ - l. “-3)

with
L= L| + C;(Lz - L‘)A:- (“)

In ail results obtained so far it was possibie to regard both phases on equal
footing. In contrast, the Mori-Tanaka method makes a clear distinction
between the continuous matrix and the discrete fibrous or particulate rein-
forcement. Therefore, it 1s necessary to designate the phases by numbers, which
we select as | for the matrix and 2 for the reinforcement. We furthermore
assume here that the particulate phase is represented by ellipsoidal inclusions
of similar shape but which can be, however, of different size. The model can
be applied to inclusions which are aligned, may have a certain orientation
distribution, or are of random orientation. For simplicity of the exposition we
chose to deal here with the case of aligned inclusions.

The approximate evaluation of the strain concentration factor A, will
illustrate the method. Under dilute conditions, A ; would be found from strains
in a single inclusion embedded in an infinite matrix subjected to the uniform
boundary strains (2.5) with @ = 0. The solution of this problem is

A =T, (4.5)
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where
T=[{+SL'@,;-L,)]", (4.6)

and S is the Eshelby (1957) teasor.

Of course, in the case of a single inclusion the average strain in the infinite
matrix is not affected by the presence of the inclusion and is thus equal to ¢,
In contrast, when many inclusions are present, the magnitude of the average
strain in the matrix, and in the inclusions, is influenced by their interaction.
The Mori-Tanaka method assumes that the average strain ¢, in the interact-
ing inclusions can be approximated by that of a single inclusion embedded in
an infinite matrix subjected to the uniform average matrix strain ¢,. This is
illustrated in Fig. 1(a) which shows Problem 1 with 8, = 0, which must now
be solved for a single inclusion in a certain large volume V'’ which is enclosed

oS) = ¢’z
#S)=0

oS )me,x
50(5') =0
4 *\
{ o2\
t 9
= \‘ H
. /‘5'
N
(a)
€,(S) = ¢’
65 =0
0 (S) = o0

FiG. 1. A schemati representation of the Mori- Tanaks model for the cass of mechanical losding.
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by a surface §', and subjected to the boundary condition
o(S') = ¢, x. 4.7

The solution is
g, =Te,, (4.8)

and as clarified by Benveniste (1987), it represents the essential assumption of
the Mori-Tanaka method. It also implies that
A, L TA:. (‘.9)
Using (4.3), we obtain the estimates of the matrix (1) and reinforcement (2)
strain concentration factors
A =1+, 4.10)
Az = T(C‘l + Czn-‘. (‘.ll)

which can be substituted into (4.4) to provide an estimate of the overall
stiffness
L=L, +c;(L; = L)T(c,1 +c,D 4.12)

A similar procedure with the boundary conditions (2.4) and 8, = O and (4.1)
and (4.2) yields an estimate of the overall compliance

M= M, + c;(M; = M,)Wie,] + ¢, W)™, @.13)

where W denotes the stress concentration factor tensor of an isolated inclusion
and is given by
WeL,T™,. (4.14)

Benveniste (1987) had shown that the results (4.12) and (4.13) are consistent
in the sense that M = L™'. We note that these equations cannot be reduced
to a symmetric form because the two phases do not enter on equal footing.

Turning next to the effective thermal strain and stress tensors, we substitute
(4.12) and (4.13) into (3.6) and (3.10), respectively, to obtain

m=m, +c;IMy - M,)W(c,] +¢c,W)'(My; - M.V '(m; -m,), (4.15)
L=, +cy(Ly; = L,)T(c,] + ¢,D'@L, - L,)0, = 1) (4.16)

Since (3.6) and (3.10) satisfy (3.2,) and, as we just concluded, M = L"!, it
follows that the m and | obey the relation | = —Lm.

4.2. Proof of Consistency

The Mori-Tanaka method has been used previously to predict the effective
thermal expansion coefficients of particulate composites (Wakashima et al.,
1974; Takahashi er al., 1980; Takao, 1985; Takao and Taya, 1985). In these
works, the method was not implemented through (3.6) and (3.10). Instead, it
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was applied directly to the thermal case by using the equivelent inclusion idea
of Eshelby (1957) and the eigenstrain concept. In what follows we rederive the
Mori-Tanaka results in a different way, and then prove that the results are
consistent with (4.15) and (4.16).

Consider first the thermal loading problem (2.4) with @, = 0. As in Section
4.1, we write the solution of this problem for the single inclusion case in the
form

o\=0 ¢ =wb, 417

where w is the average stress in a single inclusion embedded in the matrix and
subjected to umit temperature and zero traction at the remote boundary §'.
From the volume average of (2.12) we find the average stress in the single
inclusion as

wa(l-W(M, -M,;) ' (m-m,) (4.18)

For a finite concentration of the reinforcement, the solution is obtained again
from the Mori-Tanaka assumption that the average stress in each inclusion
is equal to that found for the dilute case with the boundary conditions shown
n Fig. 2(a)

0S)=8, e, (S)=en, (4.19)

where @, is the unknown average stress in the matrix st finite concentration
and =" 1s the outside normail to §'.
To find e,. we note that the boundary conditions (4.19) cause the average
stress in each inclusion
o= 'ao + W.h (‘20)

where the second term accounts for particle interaction and W is given by
(4.14). Recall now (3.4) and write the strains as in (2.2)

mb, = c,(M, @, + m,6) + c;(M,; 8, + B;8,) 421

Also recall that for @ = @

The last three equations lead to the expressions
mé, = [m, + c;(m; — m,)]6, + (M, - M;)c,0,, (4.23)
e, = —cy(c, ] + ;W) ' wh,. (4.24)
Substitution of (4.18) into (4.24) and then into (4.23) yields
m=m, +c;[1 = (M, - My)c,(c,] + ;W)™
(1= W)(M; - M,;)"')(m; - m,), (4.23)
which can be written as
m=m, + (M, - My)(c,1 +c,W)™!

fie,1 + c;W)(M, ~ M;)t =, (1 = WM, - M;) ' J(m; ~ m,)
(4.26)
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e (S) = o,n

gﬂ -b
\",.
“\

o§) =gz
S =8

)
L)
\)
N

Sor

e
01

(d)
FIG. 2. A schematc reprasentation of the Mori-Tanaka model for the cass of thermal losdings.

Factoring out (M, — M,)"! in the middle expression provides
e m, + My - M)l + ;W) 'W(M; - M) (e - m,), 4.27)
which, together with the identity
(€, +c;W)'W = Wic, ] + ¢, W), (4.28)

shows that (4.27) is identical to (4.15). In addition, we demonstrate in Appendix
B that the overall m given by (4.27) is actually identical to that derived in a
different way by Takao and Tays (1985)

A similar proof of consistency can be given for the overall thermal stress
vector L, (4.16). Here we consider Problem 11, with the boundary coaditions
(2.5) and ¢, = 0. In the spirit of the Mori-Tanaka method, we first take a
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single inclusion in a large matrix volume V' and specify that on §', u(S’) = ¢, x,
the average matrix strain at finite concentration, Fig. 2(b). The inclusion strain
is given by the counterpart of (4.20)

CI Ld '90 + T‘ll ("29)
where t follows from the volume average of (2.18) as
te(l- T)(L. - L;)"(la - l,). (430)

Here, the first term denotes the average strain in an isolated particle embedded
in an infinite, stress-free matrix medium and subjected to a uniform thermal
change 6, whereas the second term, with Y given by (4.6), accounts for particle
interaction. We also write

T=e,e, +c38; =0, 4.31)
and substitute from (2.1) and (3.1,), with T = 0, to find
lao = cl(l'l‘l + l|0°) + C;(L"z + lzao)- (‘.32)

Due to the similar structure of ((4.29), (4.30), (4.31), (4.32)) ((4.20), (4.18),
(4.22), (4.21)), respectively, it is clear that the former set will result in | given
by (4.16), in the same manner that the latter set resuliad in (4.15).

S. Tempersture-Depondent Material Properties

In many cases of practical interest, and particularly in high-temperature
applications of composite materials, the magnitudes of certain material prop-
erties such as stiffness and thermal expansion coefficients deped on tempera-
ture. Typically, elastic moduli or compliances are experimentally measured at
specific temperatures, and the coeflicients of thermal expansion are obtained
as denvatives of strain-temperature records taken in 8 certain temperature
interval. In any case, the temperature dependence of thermoelastic coeflicients
can be represented by suitable functions which approximate the experimental
data with sullicient accuracy.

We recall that all the results obtained in the preceding sections were derived
from solutions of either Problem 1 or 11, Equations (2.4) and (2.5), which were
formulated for linear thermoelastic materials with temperature-independent
properties. These results certainly remain valid for infinitesimal thermal
changes. For exampie, consider Problem 1, and assume that at a given s, and
6, the tensors B,, b,, M,, and m, are known, and are now functions of 8. For
an increase in temperature and stress deaoted by d6, and 6, we can now write

de, = B,(x; 6,) deg + b,(x; 8,) db,, (5.1)
with
b,(x; 65) = [1 = B,(x: 6)][M,(6,) = M;(65)]™* [m;(6,) — m,(6o)]. (5.2)
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It is therefore clear that with the temperature-dependent properties repre-
sented in a step-wise constant manner, an incremental implementation of the
results derived in the present paper becomes possible.
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Appendix A

This appendix presents a discussion of the decomposition scheme for the
degenerate cases in which (M, — M,)~! or (L, — L) fail to exist. The two
important cases of isotropic and transversely isotropic constituents will be
analyzed.

Consider first the case of isotropic constitueats for which the tensors M,
and m, can be written in component form as follows:

1
(M) = 5B + z::(a,a, +88, -850 (ALD)

(m,,), = a,d,, (A1)

where x;, u, are the bulk and shear moduli of the phases and a, are the therms!
expansion coeflicients. For the sake of brevity we limit ourselves to (2.11), a
similar discussion applies for (2.16).

The difference (M, — M;)~! can now be written in componeat form

(M, = My ]y = (i - l)-' bl

K, K3

+ G - l)" (el + Spdp = $5,484)  (ALI)

1 M
Use of (A1.2) and (A1.3) in (2.11) yields

AR
b= 3(.?, - x-;) (@ = a3)ér (AL.4)

which means that even though (M, — M;)"! becomes singular for u, = u,,
the decomposition scheme continues to be well defined. The decomposition
fails. however, if x, = x,.

Equation (2.11), and the specific result of (A1.4) in (24), give the well-known
Levin’s formula

1 1\ ¢ e
T=mCya; + 08y + (@ - a,)(“—l - ;;) [; - ‘—‘ - ‘—:]. (ALS)

which also becomes singular when x, = x,. It should be noted, however, that
this difficuity can be circumvented if the more general Levin's result, based on
the concentration factors B, (see equation (2.17) in Rosen and Hashin (1970)),
is used instead of (A1.5). It is of interest 10 note that these degenerate cases of
Levin's result have not been dealt before in the literature.
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We consider next the case of transversely isotropic constituents and choose
this time to illustrate the analysis with (2.16). The tensors L, and | can now be
denoted using the scheme used by Hill (1963), Walpole (1969), and Laws (1974)
(see the last reference for a comprehensive exposition of this notation)

Ll = (Zkl' lu ’l' L zml' 2’!)‘ (AL.6)

L= (8", Bi") (ALT)

where k, is the plane strain bulk modulus for lateral dilatation without
longitudinal extension, n, is the modulus for longitudinal uniaxial straining,
1, is the associated cross modulus, m, is the shear modulus for shearing in any
transverse direction, and n, is the modulus for longitudinal shearing; finally
Bf"' and B{" denote, respectively, the thermal stress coefficients in the transverse
and longitudinal direction.

In the notation of (A1.6), (L, — L) becomes

(Ll - L:)
= [2(ky = kah{ly = L)L (1, = 13) (0, = ny), (2m; = 2m;), (2p, = 2p,)),
(AL8)
so that (L, — L,)"! is given by
(L: - Lz)
_(n.-u, _h=ly =13 k =k 1 1 )
2 U 2" A "2m=-2m'2p, -2,/
(A19)
where 4 is defined as
Am(k, = ky)(m, = ng) = (I, = I3)% (AL.10)
The product (L, = L;)'(l, = 1) therefore becomes
L, -L)"'0, = L) =(p.q) (Al1.11)
with p and q given by
- =2 _ g b=l a0 an
p= =g (A" - B = (AL [ (AL12)

- - h=-1h - ki —k; 2o
q 2 33 8" -+ N (8" - A (AL13)

so that the product in (A1.11), and thus the decomposition scheme fail to exist
when 4, as given by (A1.10), vanishes.
The reduction of the present results to the case of isotropic constituents can
be readily carried out by noting that for isotropic phases
L, = [2(x, + $a) O = da) (6 = $h x; + $0000 200 20),  (AL14)

1= (58] (AL1S)




80 Y. Benveniste and G. J. Dvorak

thus reducing 4 to
A= 3(uy = pa)x, = x3) (Al.16)

andpandgqto

1
P'Q'm(ﬂn = B3} (ALIT)
Therefore, in the case of isotropic constituents, the decomposition scheme fails
only when x| = «,.

Appesndix B

In this Appendix we will prove the equivalence between our result (4.25) and
that obtained by Takao and Taya (1985). The approach used by these authors
is based on the eigenstrain concepts and equivalent inclusion formalism. Four
equations in Takao and Taya (1985) determine the effective thermal expansion
tensor. We will reproduce them here and show that they lead, in fact, to the
relatively compact closed form of (4.27).

We first note that the effective thermal expansion tensor is denoted in the
Takao and Taya paper by a,. whereas the symbol a® is used there to denote
the thermal strain due to the difference between m, and m, under temperature
change 0.

Equations (3), (6), (7), and (13) of that work are,

e* = (m; — m,)b,. (BL.1)

L,(e + (S~ Da® + (S — D)e*] = L,[¥ + (S — Da* + Se*}, (B1.2)
E+0yS - D(a® + %) =0, (B1.3)

m=m, + ﬁ"ﬁa:—"l. (B1.4)

We have also used m,, m, for @, . &,; L, and L, for C, and C,; 6, for Ar; and
¢, has been used instead of f in Takao and Taya. In that work e® denotes the
fictitious strain called “eigenstrain”™ or “transformation strain™ and ¥ is the
volume-averaged disturbance of strain in the matrix. The tensor S stands sgain
for the Eshelby tensor appearing in our equation (4.6).
We start by substituting (B1.1) into (B1.4) .
4 3..
mec,m; + My + . (BL.S)

6o
Use of (B1.3) and (B1.1) in (B1.2) gives for ¢*

ey = LS + 1Ly + 65Ly1e" = (L, = Ly)(S - Dm; = m,)6s,
' (BL.6)
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which, when substituted in (B1.5) provide Takao and Taya’s principal result
M= C,lll, -+ C:mz + (Czcl)[cl(l.oz - L,)S -+ CILI + Cng]-l
(Ly = Ly)(S = I)(m; — m,). (BL7)

We will now show that this last expression is identical to (4.27) or 10 an
equivalent form which is obtained by substituting (4.13) into (3.6)
After some manipulation we obtain

m=c,m, +c;m, +¢,63(M; -~ M;)(1 - W)
(e F + ;W) (M = M) \(m; - my) (B1.8)
this implies that (B1.7) is identical to (B1.8) if the following equality holds:
[e)(L; =L)S+¢c Ly + L, ]7'(@L, = Ly)S = 1)
=(M, - M)(1 = W)(c,1 +c;W)'(M; - M,)"". (BLY)
Using (4.6) and (4.14) we note first that
1-Wa[M,+SM, - M)]'(S- DM, -M,), (B1.10)

(Cl' + f3W)-l - [CIM‘ + C|M3 + cls(M| - MZ)]-l '[M) + s(MI .(:")2;
1.1

Next, taking into account the equality
T=W)cd+c;W) ' m(c, ] +c,W)'T=-W), (B1.12)

it is easy to show that (B1.9) is in fact valid. This proves the equivalence
between our relation (B1.8) and that resulting from Takao and Taya's work.
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The effect of local eigenstrain and eigenstress fields. or transformation fields. on the
local strains and stresses is explored in multiphase elastic solids of arbitrary
geometry and material symmetry. The residual local fields caused by =uch
transformation fields are sought in terms of certain transformation influence
functions and transformation concentration factor tensors. General properties of
these functions and concentration factors. and their relation to the analogous
mechanical influence functions and concentration factors. are established. in part.
with the help of uniform strain fields in multiphase media. Specific estimates of the
transformation concentration factor tensors are evaluated by the self-consistent and
Mori-Tanaka methods. It is found here that although the two methods use different
constraint tensors in solutions of the respective dilute problems. their estimates of
the mechanical. thermal. and transformation concentration factor tensors. and of the
overall stiffness of multiphase media have a similar structure. Proofs that guarantee
that these methods comply with the general properties of the transformation
influence functions. and provide diagonally symmetric estimates of the overall elastic
stiffness. are given for two-phase and multiphase systems consisting of. or reinforced
by. inclusions of similar shape and alignment. One of the possible applications of the
results. in analvsis of overall instantaneous properties and local fields in inelastic
composite materials. is described in the following paper.

1. Introduction

Apart from the stress and strain fields induced by mechanical loads. heterogeneous
media and composite materials in particular. must often accommodate eigenstrains
or transformation strains. and the residual fields that theyv cause in the phases. Many
different physical processes give rise to the eigenstrain fields (e.g. temperature
changes. phase transformations and inelastic deformation). The emerging smart
materials are expected to provide a desired response to eigenstrains induced by a
suitable actuator. such as a piezoceramic or shape memory alloy phase. In contrast
to homogeneous solids. complex eigenstrain fields may be generated in heterogeneous
media by one or more of these sources even under uniform overall stress. strain. or
thermal change. Such fields are of considerable interest in applications. as their
influence on the overall behaviour and on structural integrity of composite materials
may well exceed that of the mechanical service loads.
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[nspired by Eshelby (19571, the micromechanies literature abounds with studies of
transformation strain problems for solitary homogencous and imhomogeneous
inclusions of ellipsoidal shape in infinite elastic media (Mura 1987). Of course. ~ome
of the results are useful in evaluations of estimates of local fields and properties of
heterogeneous media. However. except for thermal strains. little attention has been
given to the role of transformation strains and the associated residual tields in
multiphase ~olids of arbitrary phase geometry and material symmetry.

A particularly ~igniticant application of results of this kind has been identitied in
evaluation of properties and local fields in inelastic composite materials. For two-
phase systems this has been discussed by Dvorak (1991). whereas the following paper
(Dvorak 1992) expands this line of inquiry to multiphase media. To introduce this
subject we derive here some general properties of the transformation and residual
tields in heterogeneous media. The opening §§2 and 3 present some useful forms of the
total strains in the presence of local eigenstrains. together with detinitions of the
transformation influence functions and transformation concentration factor tensors.
Then. §4 extends the concept of uniform strain fields in heterogeneous media
(Dvorak 1990) to multiphase systems. This provides an insight into the general
properties of transformation and residual fields discussed in §3. and simplities the
derivation of the self-consistent and Mori-Tanaka estimates of the local fields in §6.
The general properties of the transformation influence functions confirm the
conclusion reached by Benveniste ¢f al. (1991). that the two methods are admissible
in applications to two-phase and multiphase syvstems where all inclusions have the
same shape and alignment. For such systems we establish in §§6 and 7 a hitherto
unnoticed connection between the two methods. namely that the estimates they
provide of the overall stiffness or compliance. and of the mechanical. thermali. and
transformation concentration factor tensors in multiphase media. have a similar
structure. Finally. we discuss some aspects of a finite element evaluation c” the
transformation concentration factor tensors for sub-elements of unit cell models of
composite materials.

Throughout the paper we assume that the overall mechanical properties and the
local fields caused in the media of interest by application of uniform overall stresses
or strains. are known or can be obtained by available procedures. If this is taken for
granted. then it is often possible to evaluate the residual fields caused by the
transformation strains and stresses in terms of the overall mechanical properties. and
the appropriate mechanical influence functions or concentration factor tensors.

The customary notation is used. (6 x 1) vectors are denoted by boldface lower case
Greek or Roman letters. (6 x 6) matrices by boldface uppercase Roman letters. and
AA™' = A7'A = I if the inverse exists. Scalars are denoted by lightface letters.
Volume averages of fields such as 4,(x). &,(x) in V. or of @(x) in |". are denoted by A4,.
€ or o

2. Local and overall transformation strains

The composite material under consideration consists of many distinct elastic
phases which. unless otherwise stated. are perfectly bonded at their interfaces. No
restrictions are imposed on phase elastic symmetry or on the geometry of the
microstructure. However. the composite is assumed to be homoygeneous on the
macroscale. so that a certain representative volume } with surface N can be selected
to study both local and overall behaviour. Such representative volume may be
defined either in a general sense. as a sufficiently large sample that contains many
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phases and reflects tvpical macroscopic properties of the mixture (Hill 1963). or more
specifically. in terms of a representative unit cell of a usually periodic mode! of the
actual material geometry. under prescribed periodic boundary conditions.

The loads that may be applied at the surface S of the representative volume consist
of displacements w,(N) = ¢, v . or tractions t(8) = ¢, n,. derived. respectively. from
uniform overall strain ¢ or stress 7. The response under such loads defines a uniyue
overall elastic stiffness L. or compliance M. which are assumed to be known. In
addition. an eigenstress field i(x) and an eigenstrain field g(x). collectively called
transformation fields. may exist in I On the macroscale. thev cause an overall
vigenstress 4 or eigenstrain g. which both vanish in the absence of the local
transformation fields. Therefore. the overall constitutive relations of the rep-
resentative volume are written as

c=Le+i e=Mo+u. (14

where M= L' A=—Lu uy=-Mai.

Since the overall strain and stress in (1) are uniform in any properly defined
representative volume I, it follows that the local transformation and residual fields
that are admissible in |" must create a macroscopically uniform overall stress 4 or
strain 4. Examples of such fields inciude those due to a uniform change in
temperature. or to phase transformation within any one phase. as well as inelastic
deformation fields caused in " by uniform thermomechanical loading.

A phase is defined as an elastically homogeneous part of the representative
volume: no limitations are placed on phase geometry or elastic symmetry. except
that the latter remains fixed in the overall coordinate svstem. In the description of
local fields. the representative volume F is typically divided into sub-volumes or local
volumes V.. r = 1.2....N. which contain the individual phases. or individual volumes
of each phase. Subdivision of phases is preferred in evaluations of estimates of phase
volume averages of the local fields (e.g. by the self-corsisteni or Mori-Tanaka
methods). Of course. if a representative unit cell is used in a finite element evaluation
of the local fields. then each phase is divided into several sub-elements I,. with
distinct mechanical and transformation fields.

The constitutive relations in each local volume are written in the form

g, (x)= L. g(x)+4(x). &(x)=M,a,(x)+u,lx). (2)

where L, and M, = L;! are known phase stiffness and compliance tensors. and #,(x)
denotes a prescribed distribution of local eigenstrains. The 4,(x) = — L, g,(x) is the
corresponding eigenstress field. The local and overall strain and stress fields under
superimposed mechanical loads and transformation fields are not yet known.
However. the contribution to the local fields (2) by purely mechanical loads is

£(x) = A, (x)e. a,(x)=B,(x)e. (3)

where. as indicated in §1. the mechanical influence functions are assumed to be
known.

Let us now establish a relation between the overall and local transformation fields
in (1) and (2) respectively. This can be done by invoking the elastic reciprocal
theorem. In particular. consider a representative volume of a composite under zero
overall stress. and introduce a single eigenstress 4,(x). derived from the eigenstrain
Hy(x) = —M_, i, (x). in one or more local volumes Ve V. Denote the overall strain
caused by this eigenstrain as 4. and the resulting surface displacements on S by u.
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Next. remove the above eigenstress and apply at the surface N certain tractions ¢
which are in equilibrium with a uniform overall stress @ This creates the <tress
o,(x) = B,(x)a". and strain £,(x) = Mpd'p(x) in I, As shown in the Appendix. the
elastic reciprocal theorem relates the above tields by the following work equation

J £ouds = ~J i) ey dl 4
~ §
P
where the integration over 1, acknowledges that 4 (x) 15 applied only within [
Nince = ¢'n. where n is the outside normal to N. one can rewrite (41 in the indicial
notation.
U};J‘ Muyn +u n)ds = —J. APV ME Bl (x) o, db (D}
N vy
Note first that the term multiplying o, on the left-hand side ix by definition the
average overall strain & which. under ¢ = 0. is equal to the overall eigenstrain a.
Next. write the second integrand as

Aﬁ(x)“lsll Bf,,_,(x)ef;, = "';_,(qu-,(x)).r(.‘lf,,—))T:\,‘j(x)A (ti)
and observe that the subscripts rs and ¢ can be exchanged. Of course. M, i~

diagonally symmetric. and M, 4 (x) = —g,(x). 50 (4) can be solved for the overall
eigenstrain as

1 . -
"=T"f Bl(x)pu,(x)d}. ("
l‘”
In an analogous way. one may derive the relation
A =‘lf AL(x) i (x)dl. (3)
L

For the special case of piecewise uniform eigenstrains. {7) and (8) can be evaluated
in each local volume J;, and the results added together to provide the following
expressions v N
i=ZXc, 474, u=Zc B, (9

-] rey

-

where A4, and B, are the mechanical concentration factor tensors. evaluated as
volume averages in I, of the influence functions in (3). For transformation tields
associated with a uniform change in temperature. (7)-(9) reduce to the results found
by Levin (1967).

3. Transformation influence functions and concentration factors

The transformation fields may represent consequences of several different physical
processes. However. if they conform with the additive decomposition suggested by
(1) and (2) then. regardless of their origin. thev may be considered as additional
strains or stresses applied to the elastic composite aggregate. in superposition with
the uniform overall stress or strain. The combined effect can be described in several
different forms. For example. when the transformation fields are represented by
certain functions u({x). the local strain field follows from

glx) = s"(x)-—J- (x. x[(Lix)—~ L% &x)— L(x") u(x}jdx". (10)
v
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where £°(x) denotes the strain field that would exist in a comparison homogeneous
medium L° under the same boundary conditions. and

Lafx x' 1 ==Y, (x.x)+6, (x.x)). i

’
where f7,, is the (sreen’s function of the homogeneous medium L° that satisties

Lt (iip X X1 +0,,8x=x")=0. x.x€l. 12

where §,, is the Kronecker symbol. and d(x—x') is the Dirac delta function.
Examples of such forms can be found in the papers by Levin (1976). Willis (1978.
1981). Berveiller ot al. (1987) and Walker et a/. (1990) where they are tyvpically used
in evaluation of overall properties.

In actual solutions. (10) is often simpilified such that the actual field ¢,(x). and the
eigenstrain field u.(x). if present. are replaced by piecewise uniform approximations
in the phases. Then. (10) is reduced to a system of .V linear algebraic equations
for the local average strains. When compared with the averages of (3) over I at
uix’) = 0. the solution of this svstem provides expressions for the mechanical
concentration factor tensors in terms of integrals of I'(x.x’) in (11,). Benveniste
{1990) shows that certain simplified solutions of (10). constructed in this spirit in the
above papers by Levin and Willis. coincide with the Mori-Tanaka estimates of the
local strains under uniform overall strain or stress.

The approach adopted here starts with the assumption that the transformation
fields are represented by distributions which are piecewise uniform. either in the
phases. or in local volumes [ within those phases. The total strain caused in I, by
the uniform overall strain ¢ or stress . and a piecewise uniform eigenstrains g, or
eigenstress 4,. is sought in the following form that extends (3) as (Dvorak 1990)

N

£(x)=A,(x)e+ X D, {x)u, (r.s=1.2.....N). (18
re=1
Al

o,(x)=B,(x)o+ X F, (x)4d, (r.s=1.2.....N). (14)

Tl

Here. the D, (x) and D, (x) are. respectively. the self-induced and transmitted
etgenstrain influence functions: the F,(x) and F, (x) are the corresponding eigenstress
influence functions. In analogy with the accepted notation for description of the
response to mechanical and thermal loads. the local volume averages in I of these
functions may be referred to as the eigenstress or eigenstrain concentration factor
tensors D,,. D,,. F, and F,,. Collectively. these will be called the transformation
influence functions and concentration factors.

Note that (13) or (14) each represent the contribution of three different fields to the
total local strain or stress in };. For example. the right-hand side of (13) is the sum
of the mechanical field 4,(x)e¢. the residual fields D,,(x) g, which reflect the influence
of the eigenstrains &, in I, # I, on ¢,(x). and finally. the residual strain and the
eigenstrain u, prescribed in V, itself. The last two contributions are both accounted
for by the influence function D,,(x). or by F,,(x) in (14). hence these two functions are
different in this regard from the D,,(x) and F,,(x). In contrast to (1) and (2). the
definitions combine £ with u,. and & with 4,. to assure that the coefficients of these
tensor functions are dimensionless. As in (1), the transformation fields that may be
admitted in (13) and (14) must produce a uniform overall body force 4 or eigenstrain
4 in the representative volume. This is always the case for each single component of
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M, in a sub-element of a properly defined unit cell. and it is also assured in the
evaluation of the self-consistent and Mori~Tanaka estimates of the transformation
factor tensors discussed in 36 below. However. an eigenstrain distribution
corresponding. for example. to a temperature gradient in " would not be admissible

To connect the transformation influence functions to the integral equation
formulation of the problem. one may consider anyv eigenstrain field uix) in a
representative volume of a heterogeneous medium under zero overall strain. and
define the transformation strain influence function D(x.x') as

&lx) = Dix. x ulx). 113)

Its evaluation then follows from {10) as
Dix.xyu(x) = —f Fx. x)[(Lix)y~LYD(x".x )~ Lix)jatxydx . {16}
.

Note also that in an infinite homogeneous medium loaded only by a single uniform
eigenstrain within a homogeneous inclusion of ellipsoidal shape. D, = §. the Eshelby
tensor.

The eigenstress and eigenstrain influence functions can be related in the following
way. Let the overall eigenstrain in (1,) be evaluated from (9,) and the total strain
then substituted into (13). where the ¢,(x) is written in terms of the local stresses
using (2,). ~

e (x)=L A, (x)Mo-L, X [(c,A,(x)B'~D, (x))M, i)+4,. (N

s=1

Compare that with (14) to find

~

A (x)M =M B.ix). F,x)=LJ5, I-c,A,x)BT+D,x)|M,. (18)

where §,, is the Kronecker symbol. but no summation is indicated by repeated
subscripts.

The definition of the transformation concentration factors permits derivation of
another pair of expressions for 4 and 4. which may be used in place of (9). Consider
again the loading case ¢ = 0.4, # 0. and note that from (1) and (2) there is

N Ay
e=4i=Sc,e, =Y c(L,&+4,) (19)

re} ret

However, under zero overall strain. c,&, = —Z;\, ¢, ¢,. so that (19) provides

N N
A=Y i+l ~L)e,. (20)
rel reg2
Refer now to (13). evaluate the average local strain & in each volume I,. and
substitute — M, 4, = 4,. This provides the desired result

N N ¥y
i=Z%c¢i—-S% ¢, L D, M,i, (21)

rel1 rel g=]

An analogous derivation yields

y N N
p=Zcp—L S, MELmp, SNEE)
re] ref gw]
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The conditions that assure consistency of these resuits with those found in (9) can
be found as follows. Substitute for 4 from (9,) into (21). assign the eigenstrain 4, and
let all other eigenstresses vanish. Then. recall that 4, = d,,4,. and cancel all Ay A
similar procedure can be used between (9,) and (22). After rearrangements. this
nrovides

N N
Se,L,D M, =c(I-AY). ¢ M,F,L,=c,I-BY). (23)

rel rel

Summation over s then gives another pair of consistency conditions for D,, and F,,

N

TeoMFE L =0 (24)

re=]

11~

ce,L,D, .M, =0.

1 s

i1

._
=
[ ]
[l & K

“
—

4. Uniform fields

Before proceeding with the derivation of specific forms of the transformation
concentration factor tensors. it is useful to establish the general properties of these
tensors. and of the underlying influence functions. which are implied by uniform
strain and stress fields in heterogeneous media.

The existence of a uniform strain field in an inhomogeneous medium is usually
associated with Eshelby’s (1957) discovery of such fields within ellipsoidal inclusions
in infinite solids under overall uniform strain. However. it is not universally
appreciated that uniform strain fields may exist in multiphase heterogeneous media
of any phase geometry and material symmetry. In uniformly strained two-phase
composite media. such fields result from a superposition of the actual mechanical
strains with auxiliary eigenstrains in the phases (Dvorak 1990). Similar superposition
will now be applied to multiphase systems. (A reviewer brought to our attention the
paper by Cribb (1968) which uses a similar procedure to study thermal expansion in
a solid with two isotropic phases.) We note that the fields exist not onlv in the
statistically homogeneous media considered above. but also in media of any shape.
with cracks and cavities. provided the overall strain is uniform and no substantial
geometry changes occur during loading.

The first principal problem of interest can be stated as follows. Suppose that the
volume F’. which was initially stress free. has been loaded by certain tractions ¢° on
S which are in equilibrium with a uniform overall stress @ = a°. The goal is to modifv
the non-uniform local fields by superposition with certain auxiliary eigenstrains.
introduced in the local volumes such that a uniform stress field @, = 6°. together with
a uniform strain field are created evervwhere in |".

The problem can be solved in the following way. The uniform stress ¢° is prescribed
in all local volumes to create a piecewise uniform but incompatible strain field.
Compatibility is restored by superposition of a piecewise uniform eigenstrain field u,
which makes the strains uniform evervwhere in I': stress equilibrium is already
guaranteed by the uniform stress ¢°. The local strains thus become

te=¢, =Mo" +u =.. =Mo" +u, =M +u,=.. . =M,a"+u,
(r=1.2.....N) (25

A dual problem arises when surface displacements 4°. derived from a uniform
overall strain field °. are prescribed at S. An eigenstress field is sought such that its
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superposition with the stress field caused by &’ on ~ will lead to uniform <tre-- and
strain fields in I The strain ¢° is applied to all phases. and a piecewise uniform
eigenstress tield 4, is added to make the phase stresses umiform in I’

o=¢ =L"+a= =L +i,=L+i ==L +i, ir=1012_Y

Of course. any initial strains or stresses in I must be included in the above 4, and A .

We examine four specific forms of the above solutions. in terms of the variabies
which may be prescribed or evaluated in applications. In each case. the prescribed
quantities will be denoted as &°. ¢° u?. 42. etc.. and the quantities that need to be
added to make the internal fields uniform as é. 6. 4,. 4,. etc.

(a) Surface tractions . in equilibrium with a uniform overall ~tresx ¢’ are
prescribed on . and for a chosen r = ¢. a uniform eigenstrain g, = #) 15 introduced
in the local volume 1. A uniform strain field ¢ is created in |I” by addition of the
eigenstrains

) A, =ui— M, -M)0° e=¢ =M, 0"+u 261

(b) Surface displacements ¥® compatible with a uniform overall strain ¢ are
prescribed on S. together with one uniform eigenstress 4, = 42 in r = q. The local

q
eigenstresses which need to be added to produce a uniform stress tield ¢ in | are

=4d—(L,~L)e’. o=0,=L+4i 27

(¢) The tractions #°. in equilibrium with 6°. are prescribed on S. and a piecewise
uniform eigenstrain field 4, is sought to make the strain field uniform aind equal to
a prescribed magnitude ¢, = ¢°. An identical field is formed if displacements u°.
compatible with a prescribed overall strain £°. are applied on § together with an
auxiliary eigenstress field 4, to create a uniform stress field of prescribed magmtude
o, = 6° in I'. The two transformation fields are found as -

f, =e—-Mo° i =0"-L¢ (28)

In the special case of a statistically homogeneous medium. which follows the
constitutive equations (1). (28) become

i, =u+M-M)a*. i =i+(L-L,)e (29)

(d) The heterogeneous medium is initially stress free. Uniform eigenstrains are
introduced in two local volumes r = p.q. as u, = 4. and g, = 4y. Alternately.
uniform elgenstresses A, = Ay and 4, = A may be applled The goal i~ to tind the
overall stress & or strain s that need to be lmposed via foréonS. and the eigenstrains
A, or eigenstresses 4, in the remaining local volumes such that the local fields become
uniform. The solution is

“, == (M,—M,) ¢ = 4% —(M,- M,)é.

=0, =—(M,—M,) (4}, — ). (30)
5 =¢, =M, 6+, =M,é+u), =M, é+u
and by = 0—(L,—L)é=ai%—(L,~L,¢E

E=g = —(L,—L) &5~ 4. (31)
G=0,=Li+i =L,i+il =L i+

Recall that by their definition. 4 = — L, 4} and 43 = — L 4} Nome algebra then
shows that the fields (30) and (31) are identical.

Pror R Sor Lond. A (1992)




Multiphase elastic media 299

[t is now possible to see more clearly in which circumstances the unifor.n fields
may and may not be created in a multiphase medium. Also. their structure and
relation to the polarization fields becomes more obvious. For example. if 1n vase i)
the given eigenstrain is selected as u) = 0. or if the entire field is reduced hy
subtracting the strain u) everywhere. then one finds a particularly convenient form
of (25) or (28) as

h==(M-M)a" e=¢ =Mo" =Moo +j,. 32)
A similar result follows from case (b):
‘=—(L -Lpe®. o=0,=L=L, s°+f. (33

[f the M, and L, were selected as the properties of a homogeneous comparison
material. then the 4, and &, would define in the usual wayv the polarization strains
and stresses.

In case (c). the resulting fields (28) reveal that the medium wiil accommodate a
piecewise uniform eigenstrain field that makes the strain field uniform and equal to
e’ evervwhere in I However. it is not possible to find a non-zero eigenstrain field {23)
which. if applied to a stress-free body. would cause the overall strain ¢° to vanish.
Therefore. the transformation fields that appear in (23) and (26) are unique for a
given pair of ¢° and ¢. or ¢° and @.

Case (d) confirms that the fields caused in the medium by a uniform change in
temperature. or by any other event that creates piecewise uniform eigenstrains in the
local volumes. may be adjusted to a uniform field by purely mechanical loads only
in two-phase media. but not in a multiphase medium. or ip one subdivided into many
local volumes with different local eigenstrains. Of course. such adjustmeat is possible
if the initial fields are made part of the local transfor - ation fields (30) or (31) |

S. Some properties of the transformation influence functions

The existence of the uniform fields. and the elastic reciprocal theorem provide
certain general relations which must be satisfied by the influence functions in
multiphase media. regardless of microstructural geometry and phase properties. even
in the absence of statistical homogeneity. First. we consider a representative volume
I" subjected to a uniform state of overall stress °. As in (26). we select a uniform
eigenstrain 4 in a local volume },. and superimpose the elgenstrams (26,) with the
local strain field caused by a°. to create the uniform strain field £ (26,) evervwhere
in I According to (13). this field is

R
¢, = A,(x)¢+ T D, (x)4,. (34)

ret

Next. substitute from (26) to recover the relation

N

I D, (x)(M,—M,) =—(I-A,(x)) M, (35)
1
Since this must hold for any selected M,. it follows that for each local volume I
N N
ED,x)=I-A,x). T D, xM, =0 (36)
r=1 rel

For a statistically homogeneous medium. one can convert (36,) into an expression
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for volume averages in I;. multiply the result by ¢, L, and write the sum of both sides
with respect to 3. Since ¢, L A4, = L. this leads to an alternative expression for the
overall stiffness \ \
L= :[csL,(t—:D,,)]. 37,
s=1 rel
Another relation for the transformation concentration factor tensors follows from
the familiar condition ¢, ¢, = €. The averages of strains in the local volumes are
obtained by integration of (13). so that the sum becomes

» A3 N
e=Yc, A e+, XD, u, (38}
re] rel LY

Since ¢, 4, = I. the last term in (38) must vanish. Each local eigenstrain can be
chosen independently. hence this provides the relation

N

SeD,=0 (39)

rel

In addition to the above connections derived from the uniform fields. there are

certain reciprocal relations between the transformation concentration factor tensors.
They can be derived from the elastic reciprocal theorem. in a manner that is similar
to the derivation of (4)-(7). Consider a volume ¥’ of the heterogeneous medium and
focus on two specific local volumes I, and V. Prescribe the overall strain as £ = 0.
and introduce a uniform eigenstress 4, into the local volume 1. Since there are no
other loads. the local strain field at }, is. according to (13).

g(x)=—D,(x)M,4,. {10)
Similarly. if a uniform eigenstress 4, is introduced in ¥ only. the local strain at 1} is
&(x)=—D, (x)M,i,. (41)

Recall now the elastic reciprocal theorem (A 11) in the Appendix. and substitute
from the above equations for the work of the primed on unprimed fields. and vice
versa. This leads to

1 . o ogpe 1 . < 31t
T'J“ Ay Dy x)M, A dl = T’,“ A D (xy M i dl. (421
s ¥,
where the integration over the two local volumes was done in recognition of the fact
that eigenstresses 4, and i, were prescribed only in |, and I, respectively.
Inasmuch as all local compliance tensors are diagonally svmmetric. and the
applied eigenstresses are constant. the procedure leading to (7) reduces (42) to the

form ¢,D, M, =c,M,DE, 43

This is a general result. valid for any pair of the transmitted eigenstrain influc.:ce
functions. For the self-induced factors. it reduces to D, M, = M, DF,.

It is of interest to note that the above relations (23,) and (39) can also be obtained
by an independent procedure that uses (36) and (43). Rewrite (43) as

e,D,=¢,M,D}L, (44)
and then evaluate the -um
N
>~ D,= t,[ b M,D,T,]L,‘ (43)
- ret
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The expression in the parentheses is the transpose of (36,). and therefore vanishes:
(39) is thus recovered. It can also be shown that (36,) and (44) lead to (23,). Moreover.
(36,) and (43) give '
N N '
C,I—:C,L,D,,M,=L‘,AE. C,I—EC,M,F,,L,=(‘,E§. (46)
re=) re]
For convenience. we summarize the principal results (36). (43) and (39). together
with the analogous relations for the eigenstress influence functions

§ D, (x)=1-A,x). F\‘_ F, (x) = I- B,(x). 47
. "~
D, (x)M. =0. T FE/(x}L, =0. 148}
c, Dr,,lM, =¢, M, DL, 'c,lF,, L =c L,F}, (49)
g ¢,D,, =0 gt ¢.F,=0. (50
rel re
with r = 1.2.....] N everywhere. Note that all these relations are exact. but that (48)

and (49) provide (50). It turns out that only (47) and (48) or (49) are independent.
In other words, there are only (2 x.V) independent relations for the (V' x.V) unknown
transformation influence functions. Thus one can solve the system and find exact
expressions for the transformation functions in terms of their mechanical
counterparts only in two-phase materials. Indeed, the two-phase form of (47) and
(48) can be readily solved. with the phases denoted as r = a. 8,

D, (x)=—(I-A,(x) MyM,—M;)"'. D,lx)=(I-A(x)) M,(M,-M,)". _
(31)
The identity (L,—Lj;)'L, = —M,M,—M,)™' shows that these coincide with
equations (123) to (126) in Dvorak (1990). It can also be verified that these results
conform with (47) to (30): the reciprocal relation (43) requires that (L,—~L)) A4, =
AL(L,— L,). which does hold in two-phase systems. Since c, 4, = (L,—L,) (L —L,).
the eigenstrain concentration factor tensors D,, and D,, which are the volume
averages of (31) in I, may be expressed in terms of the overall and local stiffnesses
and volume fractions. In any case, it is clear that the eigenstrain problem in two-
phase media can be converted into a solution of a mechanical loading problem. Of
course, no such conversion is possible for » > 2. Exact treatment of such multiphase
problems must take into consideration phase interaction under eigenstrain loading
for each specific geometry of the microstructure.

However, (47) and (48) can be used to derive certain universal relations between
the unknown Dy (x) or F,(x). For example, for a three-phase medium one can
establish the following exact relations between the transmitted and self-induced
transformation influence functions and the mechanical influence functions

Du(x)(Mz_Ma) = Du(x)(Ms-Ml)— (I—A‘(X)) Ma-

D, (x) (M-~ M,) = D, (x)(M,—M,)—(I-A,(x)) M,
Dn(x)(Mx-Ma) = D,,(x)(M,—M,)—(l—A,(x))M,, -
Dyy(x) (M, — M,) = Dyy(x) (M, — M,) — (I- Ay(x)) M. (52)
D, (x) (M, — M,) = Dy,(x)(M,—M,)—(I- A,(x)) M,,

Dyy(x) (My— M,) = Dyy(x) (M, — M,)—(I—- A,(x)) M,.

Proc. R. Soc. Lond. A (1992)
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Note that these relations hold for any three local volumes where distinct uniform
local eigenstrains have been prescribed. The local properties M, can be selected as
‘'desired. some as equal to each other. Therefore. these relations apply also to two-
phase media where two different eigenstrains have been specified in one phase For
a homogeneous medium with three distinct eigenstrains. (52) reduce to identities. but
since A4,(x) = I in this case. (47) or (48) provide the connections

N
ED,x)=0. for rs=1.2.3

re=1

6. Self-consistent and Mori-Tanaka estimates
6.1. Summary of principal results

As pointed out in a recent paper by Benveniste et al. (1991). the two methods
provide diagonally symmetric estimates of the overall stiffness tensor in two-phase
systems of any phase geometry. and in those muitiphase svstems which are
reinforced by or consist of aligned inclusions of identical shape. In contrast. when
these methods are applied to multiphase systems of arbitrary phase geometry. the
stiffness estimates are not diagonally symmetric. In addition. under those
circumstances that guarantee diagonal symmetry of the overall stifness. the
methods also provide direct estimates of the overall thermal stress tensor that are in
agreement with Levin's (1967) exact relations. Moreover, Chen et al. (1992) show that
the Mori-Tanaka method delivers diagonally symmetric L for systems reinforced by
randomly orientated fibres or platelets of the same shape. Related resuits were found
by Ferrari (1991). These restrictions are respected in the derivations that follow. in
fact, the admissibility of the two methods is proved only for two-phase- and
multiphase aggregates containing or consisting of inclusion of similar shape and
alignment.

Moreover, we show here that apart from the differences in evaluation of the
constraint tensors. the estimates provided by the two methods of the mechanical.
thermal, and transformation concentration factor tensors, and of the overall stiffness
and compliance tensors of multiphase heterogeneous media. have a similar structure.
It appears that this feature has not been noticed in any of the numerous studies of
these methods in the technical literature.

In two-phase media the transformation influence functions have already been
evaluated, in (51), in terms of their mechanical counterparts. Thus the self-consistent
or Mori-Tanaka estimates of the transformation concentration factors can be found
from the corresponding estimates of either the overall stiffness. or the mechanical
concentration factor for one phase. In multiphase media with aligned inclusions of
similar shape, the overall stiffness can be expressed in the general form

~ N
L=L+Zc(L,—-L)A, M=M+3Xc (M, ~-M,B,. (33)
rmg re2
where L, usually refers to the matrix, if any. but it can actually represent any phase.
We show in the sequel that in the said systemas, the mechanical strain concentration
factors A,, and the stress concentration factors B,, are estimated both by the self-
consistent and Mori-Tanaka methods in the form '

A = (L*+L,)"(L*+L), B,=M*+M,)'M*+M), r=12..N (34
Proc. R. Sou. Lond. A (1992)
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Here. L* denotes Hill's (1965) constraint tensor of the ellipsoidal transformed
homogeneous inclusion; M* = (L*)"!. For media with aligned inclusions of similar
shape there is only a single L* tensor. hence the relation ¢, 4, = L ¢, B, = I'and (34)
render the following symmetric forms of the overall stiffness and compliance

A -1 N -1
L= [Z c,(L‘+L,)“] -L*, M= [2 c(M* +M,)"] ~M*. (35)
r=1 rel

The principal distinction between the two approximate procedures is that in the
self-consistent method L* is evaluated for a cavity in the effective homogeneous
medium of overall stiffness L. whereas in the Mori-Tanaka method L* is evaluated
for a cavity in the matrix. or any phase r = 1. of stiffness L,. The constraint tensor
is related to the polarization tensors P and P,, which are defined in the self-consistent
procedure as

P=(L*+L)'. P =(L*+L,)"' P=SL?' L*S=L(I-9), (56)
and in the Mori-Tanaka procedure as
P=(L*+L,)"*. P(L*+L,)"', P=SL?, L*S=L(I-8): (37

S denotes the Eshelby tensor of a homogeneous ellipsoidal inclusion. In both
methods, the above restrictions on inclusion shape and alignment limit the number
of allowable constraint tensors L* in a multiphase medium to one. In what follows,
we show that the same restrictions must be respected in using the methods to
estimate the transformation concentration factor tensors.

To facilitate the derivation, we first summarize the principal results obtained
below. Remarkably enough, the transformation factor tensors derived from the self-
consistent and the Mori-Tanaka methods are formally similar, and valid for r = 1,

D, =8, I-c L*+ L)y (L*+ L)}(L*+ L)L, ) 58
E, = (80 I—c(M*+ M, (M*+ M)|(M*+ M,)"' M, .| (48)
or, with regard to (54),
D, = (I-A,)(L,-Ly ", I- (AN L,,
(I~ AL~ Ly "8, [-c, AN L, | (59)

E, =(I~B)M,-M)'@$, I-¢,B")M,.}

where §,, is the Kronecker symbol, and again, no summation is indicated by repeated
subscripts.

Some simple algebra shows that the forms (58) and (59) satisfy the general
connections (47) to (49), and therefore {50). The proofs are particularly simple if (58,)
i8 used with a substitution from (54). In the self-consistent method, the similarity in
inclusion shape and alignment is enforced by admitting only a single L* in (58), that
restriction is required to satisfy the reciprocal relations (49). In the Mori-Tanaka
derivation, the restriction is invoked in the derivation itself, cf. (55,), in addition to
being required by (49). Of course, one can also show that if r = a, £, the above forms
are in agreement with the results (51) for two-phase media.

6.2. Self-consistent estimates

We consider a statistically homogeneous medium with perfectly bonded phases,
and seek estimates of the transformation concentration factors by the self-consistent

Proc. R. Soc. Lond. A (1992) e
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method. [n this method. the average local strain or stress in each phase is evaluated
from the solution of a dilute problem for a single inclusion of that phase. contained
within a large volume of a homogeneous medium which has the effective composite
“properties L. If the dilute problem is solved under uniform overall strain. one finds
the strain concentration factor tensor in the form (Hill 1965):

A, =[I+PL L) (BU)

where for each particular shape. P is given by (36) and one thus recovers (33). Note
that apart from the inclusion shape. P = PT depends only on the coefficients of L.
and that the above restrictions admit only a single P in (60) for the strain
concentration factors of all phases. The overall stiffness then follows from (335).

The self-consistent estimates of the transformation concentration factor tensors in
(13) are derived from the local field ¢,. evaluated in the solution of a dilute problem
in which the inclusion L, is bonded to a large volume of the effective medium L. An
overall uniform strain ¢ is prescribed at infinity. together with the uniform eigen-
strain a4, in V,. and. according to (9,). the eigenstrain g = Z¢, BT g, in the effective
medium. The corresponding eigenstresses are 4, = — L, u,.and A =S¢ ATA, = —~La
in ¥, and V respectively.

The solution is sought in terms of 4,, and is best found by creating first in the
entire volume the uniform strain field £ suggested by (31,).

E§=—~(L,—L)yY(4,—4) (61)

This is followed by restoring the overall strain from £ to the prescribed magnitude &.
which yields the desired estimate of the local strain as

N
€ = A,s+(l—A,)(L,-L)“(L,y,- 3y c,A,TL,ﬂ,). (62)

r=1
A comparison with (13) then provides the eigenstrain concentration factors

D, =(I-A)(L,-L)y'I-c, A-{)L"l 63
D‘r = —C,-(I-A:)(L:—L)-l“‘rr Lr' J o

which coincide with those in (59).
In an entirelv similar way one may find the seif-consistent estimates of the
transformation stress concentration factor tensors in (14). and find the result in (39).

6.3. The Mori-Tanaka method

The method was originally intended for use with matrix-based composites with
perfectly bonded interfaces. One of the phases. r = 1. is regarded as a matrix. and
phase strains are evaluated from solutions of dilute problems for each single phase
in an infinite matrix volume under overall strain e, or stress ¢,. the respective
average values in the matrix L,. In the reformulation of the original form (Mori &
Tanaka 1973) by Benveniste (1987). this translates into the following relations.

Under uniform overall strain ¢, or stress o.

e, =Te, o,=We, T=W=I W=LTM, (64)

where ¢, and @, are as yet unknown average matrix strain and stress. The partial
concentration factors T, and W, are derived from solutions of the dilute problems.
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Since ¢ = Z, ¢, ¢,. etc. one can find the average strain and stress in the phases in terms
of T, or W, as

N -1 N -1
s,=[£c,1}} £. a,=[2c,W;J o

=1 r=1

N -1 N -1 (65}
A,=T;[Zc,7;] . BS=WS[§'_C,W,] Los=12.....V
re=1 rel
This leads to the following estimate of the overall stiffness:
N AY -1
L=[E c,L,I:][E c,T;J ) 166)
re=t rel]

According to the assumption of the method. the tensor T, is evaluated in analogy
to (54) and (60) as

I=(L*+L)"L*+L,)={I+PL,-L)]". (6%)
where P = PT s defined by (57). Again. only a single P is admitted in multiphase
systems. and this permits derivation of the symmetric form (33), as also pointed out
by Norris (1989). Note that (33) holds for both methods. and that it can be used to
recover N
e (L*+L)y'=(L+L"". (68)
re}
which is particularly useful in evaluation of the sums of (67) in (65), that can be
shown to yield the A, in (54).

Next, consider evaluation of the transformation concentration factors in {13). As
in the self-consistent method, we evaluate the average sttain in a solitary inclusion
L,, but in an infinite matrix medium L,. A uniform strain ¢, is applied at infinity, and
uniform phase eigenstrains s, and u, are prescribed in ¥, and ¥,. In analogy with (13].
we seek the strain averages in matrix and inclusion in the form

& = 7;‘1+Rll“1+Rul‘v £ = 1;€1+R11”1+Ru“v (69)
where we have introduced the partial transformation strain concentration factors
R,;. which apply to the case of a single inclusion L, embedded in the matrix L,. and
are to be evaluated from the dilute solution. Clearly, in the dilute solution. the
contribution of u, to the average strain in the infinite matrix is negligible. and
therefore R,, = 0. Since T, = I, it also follows that R,, = 0.

Recall first that ¢ = X, ¢, ¢,, and find the average matrix strain as

A -1 v N
& = [ 2 ¢ I;} [E—( z Cerl)“l- z chrr"r]' (70)

rel r=} reg

Then, use that in (69,) to find ¢, as

N -1 N Ny
g = 7;[2 Cr 1;] [8—(2 chn)”l— p> chn/‘r]+Rcl“l+Rtl“c' oy

re=1 rel reg

Compare the two results with (13), and recover the following intermediate forms of
the eigenstrain concentration factors

Ny i
D,=-4,%2¢R,, D,=-A4,Z¢R,+R,,
reg r=t (¥2).

D,=-c, AR, D,=({I-cA,)R,, D,=-c AR,
Proc. R. Soc. Lond. A (1992)
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where, since R,, = 0. the sums were truncated so that s.r > 1.

It is now clear which auxiliary terms must be evaluated from the solution of the
dilute problem. Recall that the overall uniform strain ¢, is prescribed at infinity. and
‘transformation strains g, and g, are prescribed in the phases. For any inclusion
shape. the solution of this dilute problem may be found with the help of the uniform
strain field £ in (31,). First. this field is created both in the entire matrix volume and
in the inclusion. Then. the overall strain is reduced from £ to the prescribed value ¢,.
and the average strain in the inclusion is found in terms of the mechanical partial
strain concentration factor tensor T, as

&= L&+ (1= T)(L,—~L) L~ Ly, (73
The result is compared with (71,) and yields the unknown factors in (72) as
R, =-UI-T)(L,-L)"'L, R, =UI-T)(L,~-L)"'L, (+4)

and this also vields R,, and R,, by exchange of subscripts.

After substitution into (72), and some heavy algebra that utilizes (67). (68) and
(54). one recovers the results listed in (58,) and (59,). An entirelv analogous
derivation in terms of stresses leads to the estimates of the transformation stress
concentration factors in (58,) and (59,). For two-phase systems. one can recover the
self-consistent and Mori-Tanaka estimates either from (58) and (39). or by a direct
substitution of the appropriate mechanical concentration factor tensors (34) into the
two-phase expressions for Dy, in (51).

7. Closure

Although there is no intent to discuss specific cases of eigenstrain fields, it is
appropriate to mention the connection between the present results and those
obtained in studies of the thermoelastic response in composite materials subject®d to
a uniform temperature change 6. The corresponding eigenstrains assume the form
u, = m, 6, where m, is the tensor of phase thermal expansion coefficients. It is then
customary to focus on evaluation of thermal strain and stress influence functions a,
and b,, which provide the contribution a, 8 and b, 6 to the local strains and stresses.
in lieu of the last terms in (13). In particular. the complete expressions for the total
thermomechanical strains and stresses are

g, =A,e+a,0, o,=B,a+b,06. (73)
and by comparison with (13) there is
N N
a,=XD,m, b =ZXF,. (76)
re} re=)

This indicates that available solutions a, or b, of thermoelastic inclusion problems
are not directly useful in evaluation of D,, or F,,, as they do not yield the individual
transformation factor tensors entering the sums.

However, it is desirable to verify that the forms (58) and (539) do yield the
proper expressions for @, in a multiphase medium with aligned inclusions of similar
shape. To this end, substitute these forms into (76). with 4, =m, 6. and 4, =/ 6 =
—L,m, 6. After some rearrangements find the result

N
a,=A, T c,(L*+L)",—(L*+L,)", (77)

rel
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Note also that, (9) provides Levin's (1967) result

v N
m=3YcB'm, I=3%c ATl (78)

r=1 re=l
Recall now (54). substitute into (78,). and then rewrite (77) as
a, = (L*+ L)1) (79

Both (77) and (79) follow from the summation (76) of the eigenstrain concentration
factors. With an appropriate choice of L*. from (56) or (37). they provide the self-
consistent or Mori-Tanaka estimates of the thermal strain concentration factors.
It remains to be shown that (77) or (79) can be derived directly from the two
methods, without referring to (76). First. we recall the self-consistent result for
multiphase systems with inclusions of similar shape and alignment (Benveniste ef al.
1991, equation 51).
a, = (I—A,)(L,—L)"(l—l,). (80)

Then. a substitution for 4, from (54) serves to recover (79): hence there is agreement
between (76,) and (80) for the self-consistent estimates.

The Mori-Tanaka result appears in Benveniste et al. (1991, equation 24,), it can be
written as:

N
a,=—A4,%ct+1, (81)

re1
'r = (L‘ +Lr)_‘(ll -lr)r (82)

where ¢, is the partial thermal strain concentration factor, and ¢, = 0.
Substitute now (82) into (81), and use (65,) with (67) to find

N -1/ N
a, = (L‘+L,)“[( b c,(L'+L,)") (z c,(L‘+L,)“I,)—I,]. (83)
r=1 r=1
Next, recall Levin’s relation (78,) and use it in conjunction with (65,) and (67) to
obtain

N -1/ N

l= (2 c,(L‘+L,)") (2 c,(L‘+L,)"l,). (84)
re=i rei

Finally, substitute this into (83) to find that the direct Mori-Tanaka result coincides

with (79).

This proves that the transformation strain form (78) of a, conforms with the
independently derived self-consistent and Mori-Tanaka results (80) and (81).
Moreover, the formal similarity of the self-consistent and Mori-Tanaka expressions
in (79) complements the noted property of the expressions (54) for the mechanical
concentration factors, (58) and (59) for the transformation concentration factors, and
(55) for the overall stiffness.

It is beyond the present scope to discuss in detail the evaluation of the
transformation concentration factor tensors in sub-elements of unit cell models of
composite materials. Of course, even in two-phase composites, the representative
volumes within such cells may consist of many local volumes with different
eigenstrains. However, the task is quite simple in principle. If uniform strain
elements are selected as the local volumes, which is often advantageous in modelling
of inelastic deformation, then each such element s has its own elastic transformation
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concentration factor matrix D,,. Individual columns of each such matrix are
generated by applying. in sequence. a single unit eigenstrain u,. i,. .. .. H in each
element r=1.2...... V. while the overall strain in the unit cell is kept equal to zero
The local strain components evaluated by this process in each element s are equal to
the required coefficients of D,,.

A very simple example illustrates how this may be accomplished through available
routines which evaluate thermal strains. Suppose that the thermal expansion
coefficients in all elements. except in one element r. are set equal to zero. Unit local
eigenstrains in that element are generated by prescribing a uniform temperature
change. Then the total local strains in all elements s =1.2..... rool V. are found.
and finally those are converted into the respective columns of coefficients in the D,
matrices of those elements. Of course. much more efficient procedures for evaluation
of D,, may be designed using the stiffness matrix of the unit cell.

This work was supported by the Office of Naval Research. and by the ONR/DARPA-HiTASC
project and Rensselaer. Dr Yapa Rajapakse and Dr Steve Fishman served as program monitors.
Y. B. is a Visiting Professor at Rensselaer Polytechnic Institute.

Appendix

1 lastic reciprocal theorem states that in a linearly elastic body subjected to
two ._ tems of body and surface forces, the work of one system on the displacements
caused by the other system is related by Sokolnikoff (1956. p. 392)

J‘tiu;dS+J'I",u;dV=jl;u‘dS+j Fiu,dV. (A1)
s v s v

where u, are the displacements caused by the system ¢, F,. and u; are the
displacements caused by the system ¢;, F;.

When distributions of eigenstresses A, and A;, are respectively applied together
with the two systems, the local stress field is given by (2,). In the unprimed svstem.
the stresses are given by

Ty(X) = G;(x) + Ay(x). (42
where Giy(%) = Ly €410 X).
The field (A 2) satisfies
Gy ;+F+A,;=0inV, d;n+A,n =t onS (A3)

A similar representation holds for the primed system.
Define new body forces and surface tractions

F=F+A,, &=t-2yn, (A4)
and rewrite (A 1) to read

j ﬂu{dSi—J‘ i}u,’dV:J‘t’,u,dS+J‘ Fludv. (A 5)
S | 4 ) | 4
Consider first the left-hand side and substitute from (A 3) to find the expression
J- (t,-/\,,n,)u;d.S-f-f F‘u"dV+f Ay judv. {A6)
) [ 4 | 4
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Note that the last term can be written as

f (A,j_jtt;)dl'=J (A u;)')dV-J. A, u; db, (AT
v .- .

whereas the divergence theorem provides

J (A u;).)»dl'=J’ A upndS. (A8)
[ S
Moreover. u; ; = €;;+w;;. and A;; = A;,. w;; = —w;;. hence (A 7) becomes

j /\,»,.,-u;dr=f Ai,u;n,ds—f A e, db. (A9)

Vv S |2
Finally. the substitution of (A 9) in (A 6) gives
J ¢ u;dS+J’ Fl-u,'-dV—J‘ A€ db. (A 10)
S | 4 v

which is the final form of the left-hand side of (A 3). The same procedure can be
applied to the right-hand side of (A 5). That finally leads to the following form of the
reciprocal theorem. which now accounts for the effect of the applied eigenstress
fields:

J't,-u;dS-i-J‘ F,u}dV—J A,,e;,dr=f t;u,ds+f F;u,dV—f A€ db.
S | 4 | 4 S | 4 v
(All)
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Transformation field analysis of inelastic
composits materials

By GEORGE J. DvoRraKk

Civil Engineering Department. Rensselaer Polytechnic Institute, Troy,
New York 12180, U'.S.A.

A new method is proposed for evaluation of local fields and overall properties of
composite materials subjected to incremental thermomechanical loads and to
transformation strains in the phases. The composite aggregate may consist of many
perfectly bonded inelastic phases of arbitrary geometry and elastic material
symmetry. In principle, any inviscid or time-dependent inelastic constitutive
relation that complies with the additive decomposition of total strains can be
admitted in the analysis. The governing system of equations is derived from the
representation of local stress and strain fields by novel transformation influence
functions and concentration factor tensors. as discussed in the preceding paper by
G.J. Dvorak and Y. Benveniste. The concentration factors depend on local and
overall thermoelastic moduli, and can be evaluated with a selected micromechanical
model. Applications to elastic—plastic, viscoelastic, and viscoplastic systems are
discussed. The new approach is contrasted with some presently accepted procedures
based on the self-consistent and Mori-Tanaka approximations, which are shown to
violate exact relations between local and overall inelastic strains.

1. Introduction

The purpose of this paper is to introduce a method for incremental micromechanical
analysis of local fields and overall properties of inelastic heterogeneous media
subjected to uniform thermomechanical loading along a prescribed path. The
proposed approach relies on an explicit evaluation of piecewise uniform approxi-
mations of the residual fields that are introduced in multiphase solids by a
distribution of piecewise uniform eigenstrains or eigenstresses, jointly referred to as
transformation fields. As described in the preceding paper (I) by Dvorak &
Benveniste (1992), such evaluations are made with the help of novel transformation
influence functions, or concentration factor tensors. (References to, say, equation
(23) in the companion paper (I) will be denoted here by (I 23), etc.) The treatment
is suitable for composite aggregates made of any number of different, perfectly
bonded inelastic phases which are represented by constitutive equations that admit
the additive decomposition of total strains into elastic and inelastic components.
However, any phase geometry and elastic material symmetry can be prescribed, and
specific micromechanical models, such as the self-consistent, Mori-Tanaka, or unit
cell approximations, are needed only in evaluations of the transformation
concentration factor tensors. In any event, since the latter depend on local and
overall thermoeiastic moduli, only elastic solutions are required.

The elements of the present approach have been outlined by Dvorak (1991) for
elastic plastic two-phase composite materials at small strains. The present work goes
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much farther in that it treats multiphase media and allows for many different tyvpes
of inelastic behaviour. The opening §2 reviews the connections between the local and
overall inelastic and total strains. The essence of the method is described in §3.
through the formulation of governing svstems of equations for evaluatien of the total
local strains or stresses. where the coefficients are formed. in part. by the
transformation factor tensors. Section 4 is concerned with thermomechanical
deformation of elastic—plastic composite svstems. Explicit forms of the instantaneous
mechanical and thermal concentration factors are found there for two and three-
phase solids. Applications to viscoelastic and viscoplastic syvstems are described in
§85 and 6. Finallv. §7 contrasts the new approach with some accepted procedures
based on the self-consistent or Mori-Tanaka approximations. which are shown to
violate a general connection between the local and overall inelastic strains.

2. Decompositions of local and overall fields

We are concerned with a representative volume V" of a composite material that
consists of many perfectly bonded phases which may have any physically admissible
elastic symmetry and microstructural geometry. The volume I" may be subdivided
into several local volumes V. r = 1.2.....N. £ I, = V" such that each contains only
one phase material. although any given phase may reside in more than one volume
J,. The boundary conditions imposed on V" are limited to displacements compatible
with a uniform overall strain ¢. or tractions derived from a uniform overall stress a.
and a uniform temperature change &: all are expressed in a cartesian coordinate
system x defined in V. The strains are assumed to be small. but both elastic and
inelastic behaviour of the phases is admitted. providing that at each” instant of
loading it conforms with the additive decomposition

6,.(x) = a%(x)+05%(x). & (x)=¢(x)+&x). ()

where the inelastic strain &"(x) accumulates incrementally under applied stress.
according to a certain phase constitutive relation which may or may not depend on
time and temperature ; specific examples of such relations will be discussed later. The
07%(x) represents a relaxation stress, that develops in a similar way under applied
phase strain.

The at(x) and ££(x) are elastic fields related by the usual constitutive relations. so
that (1) can be recast as

o(x)=L, g(x)+1,0+06%(x). ¢&(x)=M,0,(x)+m,0+e" x). (2)
in terms of the phase elastic stiffness L,, or compliance M, = L;'. and the thermal

stress and strain tensors I, and m, = — M, [,. Since 8 and one of the inelastic fields are
independent. it follows that

m=-MIl. I =—Lm,. ¢&"x)=—Moo%x). o%x)=—L e"x). (3)

In the special case of a purely elastic response of the composite aggregate. the local
fields and overall loads are related by the mechanical and thermal elastic influence
functions

g(x)= A, (x)e+a.(x)0 ifait(x)=0. .

’ ‘ ¢ =1.2.....r...N
a,(x)=B,(x)e+b,(x)0 ifex)= O.} s=1.2 T )
The total overall stress under an applied overall strain £ = ¢,. or the total overall
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strain of the representative volume I” under an overall stress ¢ = g, and the
temperature change . are evaluated by integration of (2) over }". Asin (1). one can
recover the additive decompositions

6=0°+0"% ¢=¢+6&" (3)
where the individual terms are defined as

of = llf (L, A (x) 60+ (L,a,(x)+1)6]d}"
) (6)

¢ = [l[ (L(e,(x) — A,(x) & —a,(x) bp) + o7*(x)) AV
v

&= H‘ (M, B,(x}o,+ (M, b (x)+m,)6,)d}.
v

(7)

g = —:—f [M,(a,(x)—B,(x)ao—b,(x)0o)+e:"(x)]dl'.)
-

The ¢ and ¢* represents the purely elastic. fully recoverable cverall response ¢o the
applied loads g, or @,. and @,. that follows from (2) to (4): the associated local elastic
fields in I are given by (4). The 6™ and &" are the overall stress and strain caused
by the local inelastic fields which are. in general, independent of the current
thermomeckanical loads. However. to be admissible in the present analysis. the local
inelastic strains and the corresponding residual fields must be associated with
inelastic strains that are macroscopically uniform. Note that thcy are obtained by
superposition of the volume averages of the local inelastic fields &i%(x, or &"(x)
themselves. with the residual elastic fields induced in the aggregate by those local
fields. i.e. by 6%x) at £=0 and 6§ =0. or by &%x) at =0 and 6 =0. The
implication is that the inelastic fields. introduced by some thermomechanical loading
history leading to the current values of ¢&. ¢ and 6. cannot be recovered by an
instantaneous elastic unloading.

The decomposition {3) of the overall response is consistent with the decomposition
(1) of the total local strain or stress fields. in the sense that

o=0°+06"= %J- [e8(x)+a%8(x)]d}. (8)
|4

E=¢ 46" = -:-J- (e¢(x)+e"(x)]d}. (9)
| 4

However. the individual terms do not correspond to each other. On the local scale.
the elastic fields in (1) results from the superposition of the elastic local fields (4) with
the local residual elastic fields. On the overall scale. the elastic terms are volume
integrals of the elastic fields (4), whereas the inelastic terms are volume integrals of
the residual elastic fields superimposed with the inelastic local fields.

Evaluation of the inelastic terms in the above relations is facilitated by the results
obtained in (I). In particular, if the local fields in (2) are compared with those in (I 2).
and the overall fields in (8) with those in (I 1). the above thermal and inelastic fields
are identified as certair, local and overall transformation fields,

Ax)=10+0"(x). a(x)=m0+6"x) (10)
i=10+0" u=mb+e" (11)
Proc R. Soc. Lond. A (1992)
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Since the thermal fields are uniform. one finds from (I 7) to (I19) that

N )
I=ZXcAll,. o =%f Al(x)oi*(x)dV. (12)
r=| v
N l
m=3%c,B'm,. &= T’f Bf(x)en(x)dV. (13)
r=1 [ 3
where ¢, = I/}

In the spirit of the approach outlined in §3 of (I). the actual local fields will be
approximated below by piecewise uniforiu distributions. Under such circumstances
all local fields and the influence functions in (2)-(7) are replaced by their averages
over },. and one also recovers

N N
g¢= 3 c, ATe". &"= T c, Bler. (14)

re=1 re=1

It is then possible to evaluate the total stress and strain in (8) and (9) as

Al N

o=Le+l6+ T c,AT6* = ¥ c,o0,, (15)
r=1 re]
hi N

e=Mo+mb+ T c,BTe™ = I c,¢,, (16)

re]} rem]
with the usual definitions of the overall elastic stiffness L and compliance M = L!,
and the overall elastic thermal stress and strain tensors I, m,

N N
M=3XcMB, m=3%(Mb+m,), (17
rel re1
N N
L=XYc¢ LA, I=3%(L,a+l), (18)
r=] rel

that follows from (2)-(4), (6,) and (7,).
The expressions for overall averages are seen to be analogous to those for the local
fields in (2), and one can also establish connections that are analogous to those in (3)

m=-Ml. l=—-Lm, ¢°=-—Mo" o°=-—Le". (19)

Note that in addition to the usual connections (15,) and (16,) between the local and
overall total strajns. there exist additional independent connections (14) between the
local and overall inelastic fields. Sections 3-6 below outline the procedure that
guarantees their satisfaction in various inelastic heterogeneous solids, while §7 points
out that many micromechanical models currently in use violate (14).

Note also that in a homogeneous material (L, = L, I, = [, etc.), there is, according
to (4), A,(x) = B,(x) = I, and a,(x) = b,(x) = 0. Since the volume average of ¢,(x) in
V' is equal to ¢, and that of ¢,(x) to g,, the volume integrals of the residual fields
vanish and the overall inelastic terms are equal to the volume averages of the local
inelastic fields.

3. Evaluation of the transformation fields

We now recall the representation of the local fields by the transformation
concentration factor tensors defined in (I 13) and (I 14). For any representative
volume under uniform overall strain ¢ = ¢, or stress ¢ = ¢,, and a temperature
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change 8 = 6,, which contains a piecewise uniform distribution of the thermal and
inelastic fields associated with uniform overall loading and deformation, the averages
of the local fields are written as

A

& =A,e0+ X Dm0, +&%), rs=12.NX, (20)
r=1
N

6,=B,0,+ £ F,(,0,+0%). r.s=1.2,..N. (21)

r=1

The A, and B, are the mechanical concentration factor tensors. and D,,, F,, are
certain eigenstrain and eigenstress concentration factor tensors. They all depend on
the local and overall elastic moduli, and on the shape and volume fraction of the
phases. and are therefore constant. The self-induced factors D,, and F,, contribute
both the residual field caused in V, by the transformation fields. and the fields
themselves, these two contributions may be separated. Self-consistent and
Mori~Tanaka estimates of these tensors were discussed in §6 in (I), the key results are
reproduced in (63) and (64) below. Recall also that (I 76) provides the connections

N N
a=%D,m, b,=ZXF,Il, (22)
r=1 r=1
hence the thermal terms in (20) and (21) may be eliminated from the sums.
Many inelastic constitutive laws relate either the local relaxation stress ¢%° to the
past history of the local strain ¢,, or the strain & to the history of the local stress a,.
When these stresses and strains are uniform in V,, this can be formally written as

o =g(). & =flo,) (23)

In some cases (e.g. in plasticity of metals) such relations exist between the respective
increments. In any event, to accommodate (23), the equations (20) and (21) are
modified by the identities & = — M, g%° and 67* = — L &', derived from (3), and by
the relations (22). This provides the following two systems of governing equations for
evaluation of the local strains and stresses

hi
e, +D, M. gle,)+ ¥ D, M,gie,)=A,e+a,8, rs=12 .. N, (24)

re=1
Tes

N
o+F,L,fle)+ T F,L fle,)=B,6+b,8, r,s=1,2,... N. (25)

=
At any point of the prescribed overall thermomechanical loading path, these
equations must be satisfied by the piecewise uniform approximations of the total
local fields in the representative volume of an inelastic heterogeneous medium. As
long as all the concentration factor tensors are constant, similar equations also hold
for local and overall strain and stress increments, and for their time rates of change.
If at least one of the above systems can be solved along the prescribed
thermomechanical loading path, it yields piecewise uniform approximations to the

total local fields in (2).

In this manner., the inelast:- deformation problem for a muitiphase composite
material is reduced to evaluation of the mechanical, thermal and transformation
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factor tensors. which depend only on the local and overall thermoelastic moduli. and
to integration of one of the systems of the governing equations (24) or (23) along the
prescribed loading path.

The concentration factors may be evaluated from a micromechanical model for
elastic heterogeneous solids. as discussed in §§6 and 7 of (I). To be admissible. these
factors must satisfv the general connections (I 47) to (I 50). This guarantees that the
respective local and overall inelastic fields conform with the relations (12) to (14). and
that the total local and overall stresses and strains satisfv (15) and (16). Therefore.
one can substitute from (13,) or (16,) into (23) or (24). respectively. to reduce the
number of unknowns in either svstem from .V to N — 1. Under certain circumstances.
one can also use (13,) or (16,) to accomplish additional reductions: this is illustrated
in §7 below.

In unit-cell models, the concentration factor tensors are usually found from elastic
finite element solutions. and integration of (24) or (23) then reproduces the results
that would be obtained from a finite element solution of the particular inelastic unit-
cell domain during the prescribed loading history. Under certain circumstances. the
present approach is more efficient than the finite element method. and in any case,
it offers a particularly simple way for introduction of the constitutive relations of the
phases.

The method of solution of (24) or (25) depends on the specific form of the inelastic
constitutive equations (23), and is best illustrated by the examples that follow.

4, Elastic-plastic composite systems

As one of the possible applications of (24) and (23), we consider a composite
aggregate with elastic—plastic phases (Dvorak 1991). No attempt will be made to
spell out the details of the various constitutive theories. Instead. we adopt the
general incremental form for material points which. subject to certain loading and
unloading criteria. undergo plastic straining from some current state

da,(x) = &, [¢,(x)—B.(x). H,(x)]d¢e,(x)+ 7, [H,(x)]d6 (26)
d8,(x) = "l{r [a',(X) —ar(x)‘ H,(X)]dﬂ,(X) + ”t, [H,(x)]d0 27)

The &, and .#, are the instantaneous mechanical stiffness and compliance. and Z,. s,
are the instantaneous thermal stress and strain vectors which usually reflect the
variation of vield stress with temperature. The above #,. .#, depend on the
magnitude of the invariants of the local strain ¢,(x)—f,(x). or stress @,(x)—a,(x).
where #,(x) and a,(x) denote certain back-strain or stress terms. associated with the
centres of the current relaxation and yield surface of the material at point x in I:
H,(x) is a functional of past deformation history.

Volume averages of (26) and (27) can be evaluated only if the actual fields are
known. In piecewise uniform approximations of those fields. one may replace (26)
and (27) with

da, = L,(¢,—B,.H,)de, +/,(H,)d0, de, = H,(0,—a,H, )de, +m (H,)dE. (28)

in each local volume V,. Of course, if the subdivision of the representative volume |’
into local volumes F, is such that the actual fields in V¥, deviate substantially from
their respective averages. this replacement may lead to large errors.
From (26) and (2), the local relaxation stress and plastic strain are,
dof® = (¥, —L,)de,+(¢,—1)d8, de* = (M, —M,)do,+(m,—m,)db. (29)
Proc R Soc Lond. A (1992)
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or. in a condensed version. with instantaneous plastic stiffness and compliance
tensors dote = £Pde, +/Pdf. de® = .#Pde,+mPdh. . (30)

When this is substituted into the incremental form of (24) and (25). the governing
equations for evaluation of the local strain and stress increments become

Y N
de,+ S D, M, ¥7de, = A,ds+(a,- 5 D,,M,(?)do. (31)

r=1 r=1

N N
de,+ X F, L,.#?de, = B, da+(b,— SF,.L, m?) dé. (32)
r=] r=1

In multiphase systems. these equations are best solved numerically. but closed-
form solutions can be easily obtained, for example. for systems consisting of two or
three phases. In any case. it is desirable to write the result in the form that is
analogous to (4).

de, = o, de+2,d0, do, = H do+74,db. (33)
where o,. e, and #,. £, are the instantaneous mechanical and thermal strain and
stress concentration factor tensors for the local volumes V,.

Once the instantaneous concentration factor tensors are known, the instantaneous
overall stiffness and compliance of the inelastic composite medium can be defined as
tensors relating the overall stress and strain at any instant of loading. The derivation
and the resulting expressions are entirely analogous to the elastic case cf. (15) to (18),

do = Lde+/df. de= M do+mdb, (34)
N N

g’ = 2 Crg’rdrv { = Z cr(grar+(r)’ (35)
r=) r=1
N A

M= c, MR, m=3c (ML +m,). (36)
r=1 r=1

As one illustration, we present the closed-form solution for a two-phase system,
where the phases are denoted asr = a, 8, and s = a, #. Then. (31) or (32) each provide
two equations, which may be supplemented by (15,) and (16,), solved in the form
(33). and thus give the concentration factor tensors

o, = (I1+D M, L2~ (c,/c;) D, M, L5 [A,—(1/c,) D, M, £8), |
a,=[I+D M, £~ (c,/c;) D,, M, £3]" [a,~D,,M,/?— D, M, /%] |

B, =[I+F, L M~ (c,/cs) F,yLy M5\ (B, —(1/c,)F,L, 43, )

b,=[I+F, L MH—(c/cy) F L, M3)'(b,—F,L, mZ—F,ﬂLﬂm};].J

The « oncentration factors for phase # are obtained by exchange of the 2 and g
subscripts. .

One may recall here that the transformation concentration factor tensors of two-

phase materials are related by exact connections to the elastic mechanical
concentration factors (Dvorak 1980, equations (123)-(126))

D, =(I-A)(L,-Ly"L, D,=-(I-4)L,~L)"'L, |
F,=(I-B)M,-M)"'M,, F,,=—(I-B)M,-M,)'M,.|

- These may be substituted into (37) and (38) to derive expressions for the
instantaneous concentration factor tensors which depend only on the elastic
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mechanical concentration factor tensors. phase volume fractions. and on the
instantaneous phase properties. If desired, the depender.ze of the instantaneous
concentration factor tensors on local geometry can be eliminated altogether by
appealing to (A 17) in the Appendix. which relates the elast:~ concentration factor
tensors to the overall elastic moduli L or compliances M.

Another illustration pertains to a three-phase system. r = 1.2.3. where one may
write (31) or (32). together with (13,) or (16,). to express one of the unknown strains.

say de,. as dé, = (de—c, de, —c, dg,)/c,. (40)

This reduces the system (31) to two equations that can be readily solved. With
reference to (33,). one finds the following instantaneous strain concentration factors.

o =[2;'Z, - Y;' Y\ 272, - Y, Y )

ey, =[27'Z,- Y;' V]2 'z, - Y, ly). } ()
&, =(Z7'Z,~ Y'Y, [27'Z,- Y[ 'Y,), } (42)
a,=[Z;'Z, - Y;' Y\ ][22, - Y1y,

A= (/) I—c, =, ), ay=(l/c)[I—¢c,a,—c,a,], (43)
where the auxiliary tensors were defined as

Z,=1+D, M, £%—(c,/c;) D)y M, £, )
Z, =D\, M, LY —(c,/c;) Dyy; M, £,
Z,=A,—(1/c,) D,; M, ¥5,
z,=a,—~D,,M,{}—D;M,(}—D; M, /3,
Y, =Dy M, £ —(c,/c;) Doy My &8,
Y,=I1+D,, M, #2—(c,/c,) Dyy M, ¥5,
Y,=A4,—(1/cy) Dy M, L%,
Y¢=8,— Dy M, (Y —Dy; M, (}—D s M, (5. )

(44)

5. Linearly viscoelastic composite systems

The typical approach to problems of this kind uses the correspondence principle of
linear viscoelasticity, to relate the effective viscoelastic properties to the effective
elastic properties. In general, an exact analytical solution of an elasticity problem for
a given geometry of a heterogeneous medium can be converted into a transform
parameter multiplied Laplace or Fourier transform of an analogous viscoelasticity
problem. The latter problem is thus reduced to an inversion of the respective
transformed solution (Christensen 1971).

The present approach offers an alternative which may be useful when the analytic
elasticity solution or the inversion prove difficult to find. As before, we consider a
representative volume of the composite aggregate, but allow viscoelastic deformation
to take place in one or more phases. The total strain in each local volume is assumed
to conform with the additive decomposition (1), where the elastic fields correspond
to an instantaneous elastic response and thus depend only on the current local strain
or stress according to (2), while the inelastic fields are certain functions of time and
of the local strain or stress history. The overall stress or strain and temperature
change applied to the representative volume are assumed to be uniform. The
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derivation is limited to thermorheologically simple materials. where the effect of a
uniform temperature change on the relaxation function is reflected by replacing the
time variable in this function by a new variable that depends both on time and on
a temperature-dependent shift function. Therefore. it is sufficient to consider
isothermal viscoelastic behaviour in the derivations that follow. and allow for the
influence of temperature changes on these relations only in actual zvaluations.

In linear viscoelastic solids, the total strain caused by a history of applied stress
that starts from zero stress at ¢ = 0. is usually described by (Christensen 1971)

()= J:J,(t—r)%df, (45)
where the function J.(t—71) is the creep compliance. assumed to possess the
symmetries Ji,, = J},, = Ji;. If the strains due to the instantaneous elastic
response can be separated from the total strain (45). as in (2,), the corresponding
elastic moduli serve in evaluation of the various concentration factor tensors in (24)
and (25), while the inelastic part of (45) is substituted into (23) and then into (24).

In a similar manner, if the local volume ¥, is subjected to a certain time history
of prescribed deformation starting from ¢, = 0 at ¢ = 0. one can write the resulting
total stress as

J’ de,(7)

a,t)=| G (t—1)—/—dr, (46)

° dr
where G,(t—7) is the local relaxation function which has the same symmetries as the
creep compliance, and then call upon (2,) to separate the instantaneous elastic
response. Again, the resulting elastic moduli are used to evaluate the concentration
factor tensors that appear in (25), and the relaxation stress component of (46) is
substituted into (23) and (25). In either case, one obtains a system of integral
equations for evaluation of the total local strains or stresses.

The preferred form of the solution of (24) or (25) for the local stresses and strains
at a given time ¢ of the overall loading history is

g(t) = U () (t) +a,() 6(t), a,(t) = B,(t) o(t)+b,(t) 6(t), (47)

where U, (¢). a,(t). and B,(t), b,(t) are certain mechanical and thermal influence
functions corresponding to the prescribed history of a uniform overall strain or
stress. As in (15) and (16), these results may be used to evaluate the total overall
stress or strain at time ¢.

In addition to the total local and overall strains and stresses, it may be necessary
to find the corresponding rates at time ¢. As long as the instantaneous elastic moduli
used in evaluation of the concentration factor tensors that enter (24) and (25) remain
constant. one can rewrite these equations for the local and overall rates. The
corresponding constitutive relations for the rates are the time derivatives of (45) and
{(46). For example. if one considers a local deformation history starting from o, =0
at t = 0, (45) can be differentiated with respect to time. and the result integrated by
parts to yield

£ () = M,é,(t)+f,<0>a,(t)+ff,tt—r) a,(r)dr. (48)
1]

The elastic part of the total strain rate, £(t) = M, d,(¢), replaces here the original
term J,(0)d,(t), that reflects the instantaneous elastic response.
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Similarly. for a local deformation history that starts from ¢ = 0 at ¢ = 0. (46) can
be differentiated and then integrated by parts to establish that the total local stress
rate is '

é,(l) = L,é,(t)+G,(O)e,(t)+fé,(t—r)c,(ndr. (49)
0

where the elastic part of the total stress rate. ¢%(t) = L, §,(t) = G,(0) §,(!).
If the solution of the equations (24) or (25) for the respective rates is found in the
form
El) = A (), +alt)Blt). a,(t) = Bt a(t)+£,(0)0(L). (50)

one can then define the instantaneous overall stiffness and compliance. and the
thermal strain and stress tensors of the composite medium as

6,(t) = LU A +L(O(1).  &(t) = M) (1) + m(t) O(t). (31)

and evaluate them as suggested by (35) and (36). The &/, (t) and &,(t) in (30) are the
instantaneous mechanical concentration factor tensors. and the «,{f) and £,(¢) are the
instantaneous thermal concentration factor tensors. The latter may reflect both
the elastic response and any contribution that a temperature change may make to the
inelastic terms in (43) to (49). under the stated assumption of thermorheologically
simple phase materials.

Once again. the problem can be simplified if the composite aggregate under
consideration consists of only two phases and local volumes r=a.8. Then.
one can employ (15,) and (16,) to write the connections c,a,(t)+c,0,(t) = o(t).
€. &,(t)+c €,(t) = &(t). and recover separate equations for each of the unknowns.

For example. consider a two-phase composite system subjected to a prescribed
history of overall strain &) and uniform temperature change 6(t). Let the phase
constitutive relations be known in the form (43). or (46). To evaluate the estimates
of local strain rates at time ¢. in terms of a piecewise uniform distribution in the two
phases. appeal to the rate form of (24) and write the governing equations for this case
as

&,()+D,, M,65(t) + D, M, 65 (t) = A, é(t)+a, é(t).} (52)

é5(t)+ Dy, M, 6% (t) + Dy, M, 630(t) = A, E(t) +a, 0(¢).

Next. let the relaxation stresses be expressed by the last two terms in (49). To
separate the variables, substitute in turn for one of the local strain rates from the
above connections, to recover two uncoupled equations for the two rates. Only one
of them needs to be considered ; for example the equation for evaluation of the rate
éﬂ(t) is

((cs/e,) Dz} + D3} éy(t) = (D72 D,y— D2 Dyy) M,[Gﬂ (0) &5(6) + J: G‘,(t-r)s,(r)dr]
—[D:}A,—c;\I)- D;! A é(ty— (D7} a,— Dl ay) 0(t). (33)

where the concentration factors 4,, a,, D,; etc. are evaluated from the
instantaneous elastic moduli. Once this has been solved. one can find the other rate
as &,(t) = (é(t) —c4é4(t))/c,. and add the resulting increments in total strains to the
current values.

A similar procedure can be followed in evaluation of the total local strains. In
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particular. for the above two-phase system subjected to the prescribed history of
overall strain () and uniform temperature change 6(t). (24) provides two equations
for the local strain fields which can be solved for one of the unknowns. sav g4(t). to
vield

lr,/e) D} + D3 +(D} D, ,— D3l D, ) M, G (0)] e(t)
=D, D,,~D;} DW)M‘,J:GJU— r)éyT)dr

—[D;MA,—c;' )= D;! A le(t)— (Dila,— D;la ) 0(t). (54)

6. Viscoplastic systems

As pointed out in a recent review by Chaboche (1989), most constitutive theories
for viscoplastic deformation of metals conform with the additive decomposition (1).
and are of the unified type. i.e. no distinction is made between the inviscid and
viscous part of the inelastic strain. The general framework of the unified theories
often involves an assumed or implied viscoplastic potential . The inelastic strain
rate is then expressed, with reference to a particular homogeneous phase r. as

&' =&, /to, = }<a;/K? )"0, — X)/J(6,— X)), (35)
with the overstress or viscous stress o} and the function J(¢, — X,) defined by
of =Jo,~X,)-R*—k* Jo,-X,) =[3c,—X,) (0,-X,)/2)\ (56)

where X, is the back stress: g,, X, denote the deviators of ¢, and X,. The scalar k*
denotes the initial vield stress magnitude and R} its evolution. their sum is the
equilibrium stress corresponding to a vanishing strain rate at constant stress; K is
the drag stress: each may be a function of temperature. The bracket (x> = xH(x).
where H(x) is the Heaviside function.

Several particular forms and variants of (53) are in use, with different time and
temperature-dependent evolution rules for the variables X, K* and R*, or for
analogous variables. Some theories (Krempl & Lu 1984) forego the assumption of a
viscoplastic potential. and the associated loading/unloading criteria, and regard the
entire deformation process as rate dependent. even at vanishingly small rates. This
can be convenient in applications which are likely to lead to complex loading
histories with frequent load reversals. In any case, actual evaluations of the inelastic
strains for a prescribed stress history tend to be quite involved, and are often
predicated on the availability of specific magnitudes of many material parameters.
Best agreement between predicted and actual behaviour usually obtains under cyclic
loading, where the requisite material parameters appear to have more reproducible
magnitudes.

If (35) or its equivalent is taken to represent the response of one or more phases
of a composite material. the local inelastic strain is obtained by time integration of
{53). under the actual local stress history. The latter is not known a priori, but may
be evaluated at any time ¢, from the solution of the system (25), rewritten as

N

o)+ X F,,L,J‘éﬁ“(r)d-r = B,o(t)+b,0(t), rs=12, ...V, {37)
re=1 )]

under the initial conditions ¢, = 0, 8§ = 0 at t = 0, boundary conditions ¢ = a(t). and
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a uniform temperature change 8 = 6(¢) in the representative volume. The preferred
form of the solution is formally identical with that given by (47,). For a two-phase
system. one can easily write a governing equation similar to (54).

Equation (57) can also be used to analyse svstems where the total strain rate of one
or more phases is described by nonlinear functions of the current stress. providing
that the total strain can be decomposed according to (1). This may be useful in
nonlinear viscous systems with phases undergoing power-law creep.

7. Comparison with related methods

The standard procedure for evaluation of the overall instantaneous properties of
inelastic heterogeneous media is based on the early work by Hill (1965. 1966. 1967).
and its elaboration by Hutchinson (1970) and by many later writers. The basic idea
is to estimate the total strains or stresses in the phases. under an applied history of
uniform overall strain or stress, by the self-consistent method. For example. in an
elastic—plastic, isothermally deformed composite or polycrystal one can rewrite (33)
as

de, = o, de, de, = B, de. (58)
The self-consistent estimates of the instantaneous concentration factor tensors are
found from the solution of an inclusion problem, in which an ellipsoidal volume of
each phase is embedded in an elastic homogeneous medium with certain
instantaneous stiffness &£, or compliance .#. The & and # are identified with the
as yet unknown effective properties of the composite aggregate, and the
concentration factor tensors are found from the formula (I 54), written as

A, = (L*+L)NL+L), Bo=(M+ M) M+ M) (59)

Here, the &, and #, are the instantaneous phase stiffness and compliance matrices
defined by (28), and the #* and .#* are the instantaneous constraint tensors of the
transformed homogeneous inclusion in the effective medium.

The unknown instantaneous overall properties are found from the general
connections (15,) and (16,), in the form analogous to (34), (35,), and (36,),

N N
=3¢ LA, M=ZTc MR, (60)
r=1 r=1

In this manner. the incremental solution of an isothermal loading problem for an
elastic—plastic composite is reduced to a sequence of elasticity problems for a
composite with varying local and overall moduli. We recall from (I 53) to (I 57) that
approximate solutions of such elasticity problems by the self-consistent method are
formally similar to solutions by the Mori-Tanaka method, providing that the
constraint tensors in (59) are evaluated from the instantaneous properties of the
matrix. Therefore, with this proviso, the above relations can also be used to construct
the Mori-Tanaka estimates of instantaneous overall properties of the inelastic
composite. Such results were recently found from a different approach by Tandon &
Weng (1988), Gavazzi & Lagoudas (1990) and others. Of course. to assure that these
expressions can be reduced to a diagonally symmetric form, cf. (I 55), it is necessary
to limit the selection of admissible heterogeneous aggregates either to two-phase
composites, or to multiphase systems reinforced by inclusions of the same shape and
alignment, or to multiphase systems reinforced by similarly shaped but randomly

orientated inclusions (Benveniste et al. 1991; Chen et al. 1992).
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It is clear that the above estimates (60) of the instantaneous .# and # tensors do
comply with the general connections (13,) and (16,) between the local and overall
total strains and stresses. If the elastic compliance is subtracted from the total, one
finds the overall instantaneous inelastic compliance as

N
M-M=TSc(HRB-MB,). (61)

r=1

However. if one substitutes into (14,) the de® from (29,) for d§ = 0. and uses (33) to
replace the local stress de, by the overall stress da. then (16,) can be used to find the
overall inelastic compliance as

A=Y=

t4«

o, BY.# -M,)R,. (62)

r

1
-

These are completely general expressions that follow from the representation of
local stresses by (4) and (58), and from the two independent connections between the
local and overall inelastic strains (14,) and total strains (16,), respectively. It is
interesting to note that (61) and (62) may also be derived as two different self-
consistent estimates of .#. Of course, the first equation (61) is such an estimate
for a multiphase solid where the overall total strain complies with the condition
¢ = Xc,¢,. In contrast, (62) is a similar estimate of .# for the same multiphase solid,
where the above condition has been replaced by the relation (14,) between local and
overall inelastic strains.

It is thus apparent that the two expressions are distinct, except perhaps in rigid-
plastic solids where M,—0 and B,—I. However, they can be simultaneously
satisfied if the instantaneous stress concentration factor tensors 4, is evaluated in the
manner described in §4. In contrast, some simple algebra shows that if the &, are
found from (59), then (61) and (62) provide entirely different estimates of the
instantaneous inelastic compliance. Therefore, one must conclude that regardless of
their apparent popularity in the micromechanics literature, the self-consistent,
Mori-Tanaka or other procedures based on (59) and (61), or their analogues, are not
admissible in inelastic analysis of heterogeneous media.

That is not to say that the methods themselves are without merit. For example,
they may serve in the evaluation of the transformation concentration factor tensors
D,, and F,, that enter the governing equations {24) and (25), and thus be of use in
the analysis outlined in §§4-6. Such evaluation was described in §6 of (I), with the
result (I 58) and (I 59) which is reproduced here for completeness:

D, =(8,I—c(L*+L,)"(L*+L)](L*+L,)'L,

=(I-A,)(L,-L)'@é, I-c,AT)L,, (63)
F, =8, I—c(M*+ M, (M*+ M)} (M*+M,)"'M,
= (I—Bl) (M,—)\d)"(&,,l—c,B’,") Mrv (64)
where &,, is the Kronecker symbol, but no summation is indicated by repeated

subscripts.

These expressions satisfy the conditions (I 47) to (I 50) which guarantee that the
solutions of inelastic problems found from (24) or (25) agree with both (14) and (15)
or (16). In the particular case of an elastic-plastic composite, such result may be
written as (33,) or (58,), and the instantaneous stress concentration factors #, found
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in this particular way then satisfv both (61) and (62). Note that in contrast to (39).
the evaluation of (63) or (64) invoives only the constraint tensors and/or the
mechanical concentration factor tensors of the elastic composite.

To illustrate these aspects of the problem more completely. we focus on a two-
phase elastic—plastic svstem. r = z. g. where both phases may experience inelastic
deformation. In this case. there are two unknown tensors 4, which must satisfv the
additional relation ¢, #,+c,#; = I so that only one of the unknowns needs to he
found. One possible way is to solve (61) and (62) for a single #,. as

B, = (1/c (M, ~M,— (BT =D (M,~ M)+ (BE-I)(.M,— M)}
x (M—M,+(B;—D(#,—M,]. (65)

which may be contrasted with (59,).

To prove \hat this result is identical to that derived by the analysis of §4. one may
use the notation .#P = (.#,—M,) from (30). and then compare (65) with the
analogous expression (38,). First. it is useful to recall that for r = 2. g. the F,,. F,,
tensors in (38,) appear in (39). and that their substitution into (38,) provides

B, = [I—(c;/c,)(I—B) (M, — M)~ HE+(c,/c,)(I-B,) (M, — M, #5]"!
x [B,+(1/c;)(I-B,) (M,— M)~ .#7). (66)

Then, one can proceed as indicated in the Appendix to show that (65) and (66) are
indeed identical and satisfy the identity relation preceding (63).

8. Closure

Equations similar to (14) have been known for many yvears (Levin 1967: Rice 1970:
Hill 1971). However, except for the recent papers by Hill (1984, 1985). they have not
been widely appreciated in inelastic analysis of heterogeneous solids. One possible
reason was the difficulty inherent in evaluation of the residual local fields, which has
now been resolved by Dvorak (1990) for two-phase media, and by Dvorak &
Benveniste (1992) for multiphase media. This provides a more consistent basis for the
theory. but it also modifies certain aspects of the approach that follows (59) and (62).
In particular. only elastic solutions of inclusion problems are used in the evaluation
of local strains. hence the pronounced directional weakness in constraint of an
already vielded aggregate (Hill 1965) is no longer reflected through the solution of an
inclusion problem in an elastic homogeneous medium with the instantaneous >verall
stiffness Z. which leads to (59). Instead. this feature is accounted for by solviug the
inclusion problem in an elastic medium L, which contains the eigenstrain equal
to the total overall plastic strain, cf. §6 in (I).

Of course. the absence of inelastic inclusion problems in the analysis provides for
a much simpler implementation of specific inelastic constitutive relations into the
governing equations (34) or (25); this is illustrated for example by the closed-form
expressions (37) to (40) for the elastic plastic solids. That may be particularly
advantageous in unit-cell models, which have to use specific inelastic finite element
routines. It is now sufficient to use only elastic finite element solutions to find the
constant transformation factor tensors in (24) and (25). and then solve these
equations directly with any chosen constitutive relations. We will show eisewhere
that more efficient procedures can result, especially with coarsely subdivided unit
cells that are used in analysis and design of composite structures.
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It should be noted in passing that the present results may resolve some questions
that are discussed from time to time in the technical literature. One pertains to the
possibility of separation of the mechanical and thermal load effects in inelastic
multiphase media. The results of 3§4-6 make it clear that under combined
thermomechanical loading of the aggregate. the temperature change may contribute
to the current magnitude of of*(x) and &"(x). where the relative thermal and
mechanical contributions to these total local fields depend on the inelastic response
of the phases. the microstructural geometry. and on the combined thermomechanical
loading path leading to the current overall magnitudes of 6 or ¢. and 6. Therefore. the
thermal contributions to the total inelastic fields may not be separated a posteriori.
and it may not be possible to define the total thermal strain or relaxation stress.
either in (1). or in {3). Only if such definitions can be made for the respective
increments. ¢.g. in the elastic-plastic svstems in §4. the total thermal strain may be
separated in integration along the path. However. even in the elastic-plastic svstems
one cannot confirm an inelastic analog of the Levin formula (13,). although it is well
known that the thermal response of certain two-phase elastic—plastic composites can
be simulated by mechanical loading along a modified path (Dvorak 1986. 1992).

Another observation can be useful in formulation of so-called inverse problems.
which attempt to determine the local inelastic strains from observed changes in
surface displacements. or in total overall strains. Note that equations (12) to (14)
suggest that any number of local inelastic fields may exist in a heterogeneous
medium such that the overall inelastic strain or relaxation stress both vanish. Of
course. the existence of such fields mayv bring into question the uniqueness of
solutions of the inverse problems.

This work was supported by the Office of Naval Research and by the ONR/DARPA HiTASC
program at Rensselaer. Dr Yapa Rajapaske and Dr Steve Fishman served as program monitors.

Appendix

Here we prove that the instantaneous stress concentration factors in (38,) or (66).
and in (63) both satisfy the relation ¢, 8, +c,#, = I. and are identical.
Rewrite the &, in (66) as

AV = [Q‘gll)]—lg;lz). (A1)

where
BV = T—(cy/c,) (I—By) (M,— M) " M2 —(c./c;) (I—B,)(M,— M;)"' 4} (A2)
3;12) = B’+(I/Cﬂ) (1_81) (M;—Mﬁ)_l‘/ltg' (A 3)

Similarly. write the #, in (65) as

AD = (R, (A 4)
where A2 = M,—M,— (B —D M3+ (Bj— 1) A}, (45)
B = (1/c,) [M—M,+ (B} —1) A3). (46)

The phase subscripts a, £ can be exchanged to obtain
3}(91) - [3}’11)]—13(;2). g?) = [g;’m]—lgbﬂ)‘ (A 7)
Proc. R. Soc. Lond. A (1992)




326 G. J. Dvorak

where A = A0 AP = - AP (A 8)
and B3P = By—(1/c,)(I1-B,) (M, —M,)"' 4" (A9
B = (1/c,)(IM—M,+ (B ~D .#%). {A 10)
It is now easy to show that
C; 3;1)_‘__(-‘?3:]1) - [‘3(1“)]_1((3 ‘3212)4_(‘,3;}2)) = l (._\ ll)
B+, BY = (B e, B —c, B =1 (A 12)
To prove that

BV =RP. BY=RP. (A 13)

we focus on the first equality. and write it using (A 1) and (A 4) as
[3;11)]-1£Ll2) = [‘?-('21)]-13‘(’22)‘ (A 14)
or as 3;12)[3;22)]-1 = g(;n)[‘g(;n)]—l' (‘_\ 15)

under the assumption that the inverses exist.
The relation (A 15) can be proved by verifving that

.2122) = (M’_Mﬂ)—lgi22)‘ 3;11) = (MI_MA)-l‘?‘(!Zl). (..\ 16)

This can be easily shown to be true for any finite .#%. #%, if one recalls the identities
that holds for two-phase materials.

c,(I—B,)=—~cyI-By), c¢,B,=(M,—My){M-M,),
¢, By=—(M,-My)""(M-M,), (A17)
and appeals to the symmetry relations
M=M' M, =M, Mﬂ=M§.
B (M,— M) = (M,—M,)"'B], ByM,—M," =(M,—M,)"'B;.
Q.E.D.

} (A 18)
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1 Inmtroduction

Estimates of overall elastic moduli of composite materials,
in terms of phase geometry and moduli, can be obtained by
several well-known methods. For example, the Hashin-Shtrik-
man bounds which bracket the actual magnitudes of the moduli
are available for many two-phase and multiphase systems
(Hashin and Shtrikman 1963, Walpole 1969, 1981, 1984). Also,
self-consistent estimates have been available for many years
for such systems as aligned fiber composites (Hill 1965a), two-
phase media reinforced by spherical particles (Budiansky 1965),
or by randomly orientated inclusions of various shapes (Wal-
pole 1969), and for multiphase aggregates with fibrous and
penny-shaped (platelet) inclusions (Laws, 1974). Other such
estimates were found by Christensen and Waals (1972), Boucher
(1974), Berryman (1980), Cleary, Chen, and Lee (1980), and
Willis (1981). The conditions which guarantee that the seif-
consistent estimates lie within the bounds were established by
Hill (1965b) and Walpole (1969, 1981).

In its recent reformulation by Benveniste (1987), the Mori-
Tanaka (1973) method offers another alternative to finding
estimates of elastic moduli and !ocal fields in composite ma-
terials. Recent applications include the work of Weng (1984)
who found the effective bulk and shear moduli of two and
three-phase composites with spherical isotropic inclusions in
an isotropic matrix. Benveniste, Dvorak, and Chen (1989) ap-
plied this method to coated fiber composites. Zhao, Tandon,
and Weng (1989) derived the effective moduli for a class of
porous materials with various distributions. Norris (1989) ex-
amined many aspects of the method and its relation to the
Hashin-Shtrikman bounds.

The present paper is concerned with evaluation of estimates
of overall elastic moduli of certain composite materials by the
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versely isotropic fibers or platelets, and for fibrous systems reinforced by aligned,
cylindrically orthotropic fibers.

Mori-Tanaka method. In particular, we consider multiphase
composites reinforced either by aligned fibers or platelets. and
similar systems with randomly oriented reinforcement. In either
case, the reinforcement may be isotropic or transversely iso-
tropic. Moreover, we examine fibrous composites reinforced
by cylindrically orthotropic fibers. As Benveniste, Dvorak, and
Chen (19912) have shown, both the Mori-Tanaka and the self-
consistent methods deliver diagonally symmetric estimates of
overall stiffness in the selected systems. However, such sym-
metry does not obtain in estimates of overall stiffness for
multiphase systems with inclusions of different shapes or ori-
entation.

We start with a summary of most of the present results. This
is followed by an outline of the method and its application to
the selected systems. For the most part, the derivation is rei-
atively straightforward. However, the cylindrically orthotropic
fibers call for a special treatment. Some of the moduli are
found by replacement of the actual fiber by an equivaient
transversely isotropic fiber, but this approach does not extend
to the shear modulus in the transverse plane. That particular
result can be extracted only from a numerical evalu ition of
the overall stiffness tensor.

2 Phase and Overall Properties

Fibers and platelets used as composite reinforcements are
often transversely isotropic. The same is true for composite
aggregates reinforced by aligned fibers or platelets. If the axis
of symmetry is chosen as parallel to the x;-axis of a Cartesian
coordinate system, then the elastic response of a transversel:
isotropic solid may be described in the form:

[o]-[* 4] [4
T23= 2Meyy, Tz = 2peyy, Tiy = 2Py
where

1
:-5(023*0’3)' ogmO)), Emen +eyy, E=gy, (2)

and k, /, m, n, and p are Hill's elastic moduli (1964). In
particular, & is the plane-strain bulk modulus for lateral dil-
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atation without longitudinal extension, n is the modulus for
longitudinal uniaxial straining, / is the associated c¢ross mod-
ulus, m is the shear modulus in any transverse direction, and
p is the shear modulus for longitudinzl shearing.

For an isotropic material, these moduli are related to the
buik and shear moduli K and G as:

1 2
=K~ 3 G, l=K 3

In what follows, the above notation will be used both for
the phase and overall moduli. The phase properties will have
a subscript 7 = 1, 2, ... N, while the overall quantities will
appear without a subscript.

Some fibers, particularly carbon fibers, are cylindrically or-
thotropic. Their elastic moduli in the tangential, radial, and
axial directions are distinct. Nine stiffness coefficients describe
this kind of anisotropy. In a cylindrical coordinate system, the
stress-strain relation of a cylindrically orthotropic solid is usu-
ally written as:

G, n= K+ G, m=p=G. (3)

g, C, Ce C, O 0 o0 €
0o Cor Coo Cor O 0 0 €
ol _1C Co Cs: O 0 o &
oo{ | 0 0 0 G, 0 O 2¢rg
.58 0 0 0 0 Ge O 26,4
On 0 0 0 0 0 Grl \2n

O]

where 2 is the axis of rotational symmetry, and C,, G, G,
and G, are stiffness coefficients.

3 Summary of Present Results

For convenience, we first summarize the main results for
several systems of practical interest: composites reinforced
by aligned, transversely isotropic fibers or platelets, systems
with randomly oriented, transversely isotropic fiber or platelet
reinforcement, and unidirectionally reinforced materials with
cylindrically orthotropic fibers. Derivation of the results ap-
pear in Sections S, 6, and 7.

3.1 Unidirectional Fibrous Composites, We consider a
system reinforced by aligned, transversely isotropic fibers (r
= 2, 3, ... Min a transversely isotropic matrix (# = 1). Many
different fiber materials may be admitted at the same time.
The overall elastic moduli of such a fiber system are:

i <o, i cm,
rei b+ D, rm) mr*'Yl l +l -! (5)
c, P 4] m, kl

N o m==g
. LA
Z \+ P ,z.'? m.+v

rw}

ck, N cd,
,_lk-o-m. ; &k, +m, 6
N < y (=T P . 6)
ra| k’+m| rel k’*ml
ic,u,—m 2

-4y Lrel ke+m
= . 7
n Ecm, gl:c, k,+m.+ T M

= k,"'”ﬁ

We now list the results for 1wo-phase systems of techno-
logical interest; the subscripts f and m represent the fiber and
matrix, respectively:
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XY

= ZC/pmp/"' hd -‘ﬁmpf“P;:»)

chpn"' Cm(P["Pm)
M1t ) (K py + 2M ) + KM (CeMy+ € ,)
m= 9)
KT+ (Ko + 2Mp) (Cy Moy + Cuiiy)

kw LK K ) + Cokim Ky ML)

8)

10
Cf(km"mm)-cm(k/"’mm) (
Cilj(km*’mm)"’cmjm(kj‘mm)
l= (1
Cr(Km+Mpy) + Co (Kp+my,)
—In
R=Cpltm+ CrNy+ (1= Colp— C'J”;_T (12)

It should be mentioned that the effective plane-strain bulk
modulus & and cross modulus / in (10) and (11), predicted by
the Mori-Tanaka method, coincide with those derived by Hiil
(1964, Eq. (3.6)) for the cylindrical composite element. in two-
phase fibrous media, the effective modulus n obeys the uni-
versal connections, hence all the moduli &, /, 7 have the same
values as those derived by Hill (1964). Therefore, for axisym-
metric loading situations, the Mori-Tanaka predictions coin-
cide with those suggested by the compusite cylinder model.

Furthermore, Norris (1989) has shown that the Mori-Tanaka
approximation for multiphase composites, where all particles
have the same shape and alignment, satisfies the appropriate
Hashin-Shtrikman or Hill-Hashin bounds.

3.2 Unidirectional Platelet-Reinforced Composites. As
above, we denote the matrix as 7 = 1, and the platelets as r
= 2, 3, ...N. Transverse isotropy or isotropy via (3) is assumed
in all phases, together with alignment of the phase symmetry
axes with x,. The overall elastic moduli of such composite are

N N N
pl=Y cpr m=3 cm,, n"=§:c,n:‘.

rel re) ral

_gz c,— k.z c,k,+--2 c,

rel ral re}

13

Surprisingly, the effective Mori-Tanaka moduli &, /, m, n,
p of composites with aligned platelet reinforcement are iden-
tical with those derived from the self-consistent model by Laws
(1974, Egs. (42)-(46)). Moreover, we note that they also co-
incide with the effective moduli of a laminated plate (Postma,
1955).

3.3 Composites With Randomly Oriented Fibers or Piate-
lets. We assume that both the matrix (# = 1) and the com-
posite are isotropic and characterized by the bulk and shear
moduli K, X, and G,, G. The elastic moduli of the reinforcing
phases r = 2, 3, ... N are defined in the local coordinates of
each phase r, and in those coordinates each phase may be
transversely isotropic or isotropic. The overall moduli of com-
posites with such random reinforcements are

N
e "l*‘Z @ ~3K\a)

E [c,+2c,a,] '

re

Z ¢ ZGIB')

g [c. + Z c.&]

rm

G=G,+ (19)

where the parametets a,, 8, &, 7, depend on the moduli and
geometry of the phases.

For fibrous systems, these parameters are given as in terms
of phase moduli of the phases as
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_3K1 +3G,+k,— 1,

"7 3G, + 3k, 13
B,=l 4G, + (k. +1) 4G, +2(*n +G)) (16)
s 3G|+3kf pr"‘Gl n+m,

1
S,=<\n+2,
=

(2k,+ YK, +2G, - l,)] a7

k,+G|

8m,G,(3K, +4G,)
m,(3Kl - 461) + G|(3K| + 3’",* Gl)

80,.G, 4k,G,~4,G,~2E + 2k,

+ + (18)
pr + Gl 3kr + 3G|

where in this case (isotropic matrix) v, in (5) reduces to

_ 3Gk, +Gi

T3, +7G,

For penny-shaped, randomly oriented inclusions, the above
parameters assume the values

K 28,1 1[7n,+21,+4a,+gg]

'7r=%(:§ (n,=1)+

b (19

=0 T3 ' PTs 3n, pr
6r=K|*2K| £+5[k’-£]'
n 3 n,
=1 4m-¢-Z Ic—-F'- +l§G—éG£ (20)
ﬂr‘s r 3 r n 3 1 3 I"’ .

If the fibers or penny-shaped inclusions are isotropic, then
one can verify that

6r=3Kran ’71826’6’0 @2n

and for composites with reinforcements of these two kinds,
the bulk and shear moduli in (14) can be simplified as

a,
N
[CI + 2 Cﬁl']
re2
~ 8
G=G,+ Y, c(G,-G) -

7= [c.+ i c,ﬁr]

re2

N
K=K|*Z Cr(Kr-Kl)

r=

(22)

For such isotropic fibers or needle-shaped inclusions, (15) and
(16) reduce to

_3K+ 3G, +G,
*=3K,+3G,+G, 23
1 4G, + 3K, 4G, 2(y,+Gy)
=- . 4
B’ 5[3Kr+3cl"'6r GI+GI+ 7I+Gr ] (2 )

Therefore, for two-phase media with randomly oriented fi-
brous reinforcements, the effective bulk modulus X and shear
modulus G become

K,-3k, |7
K‘Kz—ﬁ(Kz—Kl)[l—Cz 3K;+G:+3G;] (25)
Jl_G-0
5 3K,+3G,+ G,

-1
2 Gi-G _2_ cz-a.] a8

Gacz-c.(G;-G.)[l

5 € Gz+‘y| L) 2 Gz+G|
Equations (25) and (26) can be compared with similar but not
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identical results found from the self-consistent method by Wal-
pole (1969, Eq. (60)).

For randomly oriented, isotropic, penny-shaped inclusions,
(20,) reduces to

L Ki4G, 26, 19K+8G,+4G,
"=3K.~4G, V735G, 75 3K,-4G, e

and the overall bulk and shear moduli of two-phase media can
be obtained as

_ 3K:-K) ™
K—Kz"Q(KZ Kl)[l—cz3K:‘P4GI} 28)

] 4,66 2 G=G]"
G=G:-¢ (G, G,)[l 5C23K1+4Gz 5© G: ] .

29

It is interesting to note that (28) and (29) are exactly the
same expressions as those derived with the self-consistent
method by Walpole (1969, Eq. (61)).

Also, it should be mentioned that Benveniste (1987) has
recently proved that the bulk and shear moduli predicted by
the Mori-Tanaka method for a two-phase composite with ran-
domly oriented ellipsoidal particles will lie within the Hashin-
Shtrikman bounds.

3.4 Composites Reinforced by Cylindrically Orthotropic
Fibers. The constitutive Eq. (4) suggests that cvlindrically
orthotropic fibers have constant moduli in the cylindrical co-
ordinate system. However, most overall moduli must be eval-
uated in a Cartesian system, where the fiber properties are no
longer constant. The effective moduli of unidirectional com-
posites of this kind are still those of a transversely isotropic
solid, and can be obtained from the Mori-Tanaka procedure,
but at least one of the overall moduli, the transverse shear
modulus m, may not be found in closed form. Except for m,
evaluation of the moduli is best accomplished by introduction
of a replacement fiber which, under certain overall stress states
has the same effective properties as the cylindrically ortho-
tropic fiber described by (4). In particular, in their recent study
of thermomechanical behavior of composite systems rein-
forced by coated cylindrically orthotropic fibers, Chen, Dvo-
rak, and Benveniste (1990) and Hashin (1990) observed that
in axisymmetric loading situations the cylindr.cally orthotropic
fiber can be replaced by an equivalent transversely isotropic
fiber without changing the fields of outer phases and the overall
behavior of the composite. Moreover, we show in Section 7
that a replacement fiber with an effective modulus p, can also
be found for the longitudinal shear loading case. No such
replacement seems possible for transverse normal or shear
loading.

The effective moduli of the replacement fiber are recordad
here as

k= (Com+ Cre)/2, /,-C";'—:lc‘-! . Py=VGaln

30)
12
n/a;-b (CH\ + CoeH +C)
2 Cn+Cq
T+9 "’——C”,'+C~(C~HI+C~H1 +C))

where the C; were defined in (4), p, is derived in Section 7,
and

i
N (C“/C”)l' H, .E‘;C"

Co-Cou’ 31
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These effective fiber moduli can be employed in (8), and
(10) to (12), to find the corresponding overal! moduli of the
unidirectional composite reinforced by the cylindrically or-
thotropic fibers. The overall transverse shear modulus m must
be extracted from the overall stiffness derived in Section 7.

4 The Mori-Tanaka Method

To introduce the derivation of the above iesults we sum-
marize here the essence of this metinod, in the form which was
recently suggested by Benveniste (1987). A representative vol-
ume element V of the composite is chosen such that under
homogeneous boundary conditions it represents the macro-
scopic response of the composite. The volume is filled with a
certain number of homcgeneous phases which are perfectly
bonded to a commen matrix. The phase volume fractions ¢,
satisfy L ¢, = 1,7 = 1, 2, .. N. In the sequel, » = 1 denotes
the matrix phase. The volume V is subjected to uniform dis-
placement or traction boundary conditions

u(S)=¢’. (S)=d"n (32)
where u and t denote the applied displacement and traction;
¢, o° are constant strain and stress tensors, and n is the outside
normal to S.

The objective is to evaluate the overall elastic stiffness L
and its inverse, the compliance M, of the composite aggregate,
defined by

7 =L @ =Mo", (33)
where ¢ and ¢ denote the volume average stresses and strains
in V. An intermediate step is evaluation of the elastic fields in
the phases. Those are found in terms of phase volume averages
(Hill 1963)

e=As, 0,=B0, (39)
where A, and B, are referred to as mechanical concentration

factors. Under the boundary conditions (32,) and (32;), the
local and overall field averages in V are respectively related

by
N N
= Z Crepy = Z C/0,.

ra] r=|

Then, the overall elastic moduli L and compliance M follow
as

39

L= ﬁ: cLA, M= i cMB..

re] rs|

In the evaluation of the concentration factors by the Mori-
Tanaka method, cach inclusion is regarded as a solitary in-
homogeneity embedded in an infinite matrix material under a
remotely applied strain or stress equal to the matrix average
¢; or a,. For ellipsoidal inclusions, the local fields in such
solitary inhomogeneities are uniform, and can be evaluated in
terms of partial concentration factors T, W,:

e¢=T, ¢, 0,=2W,0,.

(36)

an

Once the T,and W,are known, one can utilize (35) to establish
that

-1 -1
[

o= Zc,'l', é, o= ic,W, o,

ra| [ ]]

(38)

and derive the mechanical concentration factors in (34) as
-1 -1

Ar' Tr Z chr ’ nr. wr Z crwr (39)
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The effective stiffness and compliance tensors L and M then
follow from (36) and (39):

-1
L= [}: crLrTr] [: C,T,] ,

M= [S c;M,W,] [S c,W,]

The partial concentration factors in (37) are conveniently
expressed in the form

T=0+PL.-L)]"", W,=[I+QM,-M)}"' @&

where the tensors of P and Q depend only on the shape of the
inclusion, and on the elastic moduli of the surrounding matrix.
For example, for an inclusion in the shape of a circular cylinder
in a transversely isotropic matrix, the nonvanishing terms of
P, written in a2 (6 x 6) array are (Walpole, 1969),

k|+4m| "kl
8mi(k,+m,)’ 8m(ky+my)’

(40)

Pp=Py= Py=Py=

42)

1 ky ~2m,
Pyy=Pyzm— , Py=——e—-
BTl 2p, “T2mk, +m))
in terms of the elastic moduli (1) or (3) of the matrix (r = 1).
Similarly, for a circular disk in a plane normal to the direction
of Xis
1 1
Pys—, Py=Py=—.
1" n b1 66 )

Alternatively, (41) can be written in terms of the overall
constraint tensors L{, M{ (Hill, 1965b) which relate the uni-
form oﬁelcls in the inclusion 7 to the uniform applied fields o°
and ¢ as

43)

o, -a®=Li(~¢), &-=M;(e°-0,). (44)
Those are connected to the partial concentration factors by
T,=(L; +L) 'Ly +L), W,=(M; +M)"'M; +M,).  (45)

The determination of L° and M"° relies on solutions of
boundary value problems for a uniformly stressed or strained
cavity in the infinite matrix medium. For example, the non-
vanishing terms of the overall constraint compliance M; of a
circular cylindrical cavity are (Walpole, 1969; Laws, 1974):

. . 1/ 1 1 . . 1
(M) )2 = (M, )3:-5(;.';‘*-)' M )y=(M)y= “

k,
(MDgs=(Mggm=s ., (MDu=—s2.  6)
1 )ss 1 Jes P D=+ (
§ Composites Reinforced by Aligned Inclusions
5.1 Aligned Fiber or Needle-Shaped Inclusions. We now

proceed to derive the results which were summarized in Section
3.1. First, consider a single fiber in an infinite matrix ( = 1)
subjected to a longitudinal shear strain 2¢, on its outside bound-
ary. In this dilute configuration, 2¢, is equal to the average
matrix strain, and the overall stress is a pure shear r, = 2p¢;.
This is an antipiane problem, hence the stress and strain in the
fiber r have only the longitudinal shear components 7, = 2p.e..
These local and overall quantities are related, according to
(44,) and (46y), as

T, =1 =2p)(e; — ¢). (Cy)]
From the phase constitutive relations and (47), one finds that
/1 = 2p/(p, + p1), and the average matrix longitudinal shear
stress follows from (35;) as
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5

N
- 2p, 0
= Z c’pr"'Pl ™

rm )

(48)

where ¥ is the overall longitudinal shear stress that is actually
applied to the composite. The average phase strains in (35;)
can be written here as

(49)

Finally, a substitution of (47) and (48) in (49) leads to the
expression for the effective longitudinal shear modulus p in
(51).

A similar procedure can be extended to the transverse shear
loading case. The constraint tensor in (46,), (44;) reduces to
vi = (1/m; + 2/k))" ', hence 7, = 7, = 2 y(&, — ¢,), where
7, and ¢, represent the corresponding transverse shear stress
and shear strain in the phase 7, respectively. As in the derivation
of the longijtudinal shear loading case, the average stress in the
matrix is

-1

mr(ml+7l) To (50)

N
= ZC

pvors " m(m+v)

and the effective transverse shear modulus m can then be
derived in the form given by (53).

Next, a pure lateral dilatation is applied without longitudinal
straining; i.e., €® = 0, ¢ = 0in (1). The local stress and strain
relation is thus reduced to s, = k.e,, and from (46,) and (46;)
the corresponding equation {c. the constraint modulus is (s,
- $51) = m(e; - e,). This and (35,) imply that

-1
S, _k.(ki+my)

i kr(kl"'ml) sp
= , 5= —
sy ki(k.+my)

() G

ra}

Then, the effective plane-strain bulk modulus & given by (6,)
can be derived from (35,).

In the same loading situation as above, ¢ = 0 suggests that
(52)

From (35;) and (52), one can write the average longitudinal

stress as
ENCI’S ls°
LA
"k, k

ra|

Then, (51), and (6,) lead to the expression for the effective
cross modulus / in (6;).

For evaluation of the modulus 7z, consider overall uniaxial
straining without lateral contraction, i.e., € # 0, ¢’ = 0 in
(1). The phase averages in the transverse plane and in the
longitudinal direction are

Tce,=0, Les, =1, Te,a,=ned, e, = €, r=12..N.
Using (54,), Eqs. (54)) and (54;) can be recast as:

5 =keé®, 5=l

53)

(59

N N
2 cr(kr-kl)¢r= i- 2 C,l, Eop

ral rel

N N
Z e (l,=l)e,= (n- Z c,n,> e (59

re] re|

In two-phase media, n follows from (55) and from the uni-

versal connections for two-phase fibrous media with trans-
versely isotropic constituents (Hill 1964):
n-cm-cny h=h

I—C|I|-Czlz k|—k; )

(56)
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In multiphase systems, one additional condition is needed
for evaluation of n, namely the magnitude of e€./¢’. In the
Mori-Tanaka method, one can use (41,) and (39,). with the P
tensor given in (42) to obtain the necessary components:

1 S Gl,=1)
, L1, keem & k+m,
£= | _ < 1 ] 57
e k,+m, ¢,
fe k,+m,

Then, the effective modulus 7 in (7) for longitudinal uniaxial
straining can be obtained from (55;) and (57).

5.2 Aligned Penny-Shaped Inclusions. Consider penny-
shaped or disk-shaped reinforcement with the normal to the
plane face of the platelet in the x;-direction. Due to the simple
form of the P tensor in (43), the partial strain concentration
factor can be derived from (41,). The nonvanishing compo-
nents are:

, n , h-1

1 ’
=— T =T”=—
1 n, ’ 12 n, ’

(58)

Th=Th=Tu=1 Ti=Ty=2"
The effective moduli can be derived as in Section 5.1 or by
applying (58) directly in (40). In either case, the results obtained
appear in (13).

6 Randomly Oriented Inclusions

In this section, the matrix is assumed to be isotropic and
the inclusions at most transversely isotropic in their respective
local coordinate systems. The effective properties predicted by
the Mori-Tanaka method follow from a modification of (40,)
and have the form (Benveniste 1987),

N N
L= L\ + Z cr‘ (Lr‘ Ll)‘rr‘ Z Cr“r}

ra2 ru=]

(59)

Curly brackets {A} denote the average of A over all possible
orientations. Note that all such averaged quantities in (59) are
isotropic fourth-order tensors, even though the underlying ten-
sor quantities, such as T,, need not be isotropic. Hill (1965¢)
and Walpole (1981) pointed out that any general isotropic
tensor A is subject to the spectral decomposition

A=al+bK (60)
where 2 and b are certain scalars, and
1 1 2
-’:iu's 6.0u, K.,u"i Guby+ 5»5,::'5 &idw)
61)

JI=], KK=K, JK=KJ=0.

This invites the notation A = (@, b), A™! = (1/a, 1/b) in liey
of that in (60).

To evaluate the overall elastic moduli (59), we recall the
following result of Kroner (1958). For any fourth-order tensor
4,in the orientation averaged quantity {A} can be expressed
as

- 11
{A}=(a, B), (A} ‘=(—.-) (62)
a B
where the scalars a, § are given as
1 1 1
G‘; A,’w, B’g AW—E A.“,. (63)

To apply this result to the L, and T, tensors we write
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(T.} =(an 8), (LT} =(5,n) (64)
and utilize it in (59) to arrive at the expressions for the effective
bulk and shear moduli that appear in (14).

Certain simplifications are possible for two-phase media

with isotropic constituents, where one can rewrite (59) as

L=L;+q (L ~Lilal+ci.0)7" (69)
Since both phases are isotropic then the first orientation
average term in (65) becomes

{L1 =~ Ly} =(3K, - 3K}, 2G, - 2Gy) (66)

where K,, G, are matrix moduli.

7 Cylindrically Orthotropic Fibers

7.1 Replacement Fiber. With reference to the discussion
in Section 3.4, we present the derivation of the effective lon-
gitudinal shear modulus p, of a replacement fiber. Under re-
motely applied stress aﬁ,, the admissible displacement field
selected in the fiber, and the nonvanishing components of stress
are (Chen, Dvorak and Benveniste, 1990):

ul=A'7 sine, 0/, = G,4’gr " sind, 0%, = G, AF ™" cose,
(67

where ¢ = V' G,,/Gn, for the original fiber, and ¢ = 1 for the
transversely isotropic replacement fiber. To insure that the
local field in the outer phase does not change after replacement
of the fiber, the interfacial quantities, u/ and ¢%, must both
be identical in the replacement fiber and in the original, cy-
lindrically orthotropic fiber. Evaluation of this requirement
leads to the equivalent longitudinal shear modulus of trans-
versely isotropic fiber in the form listed in (30,).

Moreover, the average stress b’{,, must have the same mag-
njtude in both fibers. Evaluation of this condition provides
the following expression for the effective longitudinal shear
modulus of the replacement fiber:

Gq+Ge:
g+1

It can be shown that (30;) and (68) are identical, hence either
represents the unique longitudinal shear modulus of the re-
placement fiber.

Pr= (68)

7.2 Evaluation of the Overall Transverse Shear Modulus
m. Inahomogeneous elastic medium subjected to a uniform
field of simple shear deformation in the transverse xy-plane,
the displacement components are defined by:

uy=cx, u,= —cy, u;=0, 69

where c is a constant. In cylindrical coordinates this becomes
U, =cr cos 29, uy= ~cr sin 2¢, u, = 0. (70)

In analogy with (70), we assume that the displacement field

in a cylindrically orthotropic medium under transverse shear
has the general form:

u,= U, (r) cos2e, uy=U,(r)sin2¢, u,=0, n

where U,(r), U,(r) are unknown functions of 7, which need
to be determined from the equations of equilibrium in cylin-
drical coordinates. The requisite substitution provides the fol-
lowing equations for evaluation of U,(r), Us(r):
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2U, c,,du ,
Cn = ;G,.+ C..)L
ACro+Gro) dU, 2 C o 1
+ - ar -F (G +Coo)l'o=0 (72)
_ UG+ Co) QU _ACo+Cosd o LU
r dr r ® dr
G dlUs_ GrotdCoo, _
RSB =0, ()

These can be solved analytically, the result is:
U(r) =2{(Gro + Coe) = 1(Crs + Gre)JAT"1 + 2[(G o + Coo )
+N(Crp+ Gre) 1B
+2[(Gre+ Coe) = 1:(Cre + G0 )]Cr" + 2[(Gro + Coo)

+1(Crs + Gro)1Dr™™  (74)

Ue(r) = [Cott} ~ (4G g + Coe) JAT™
(8Grg + Cog)|Br " + (Cot? = (4G o + Co0 ) ICT™:
+[Crt3=(4Gre + Cog)1Dr™™ (75)

+ [Crr'ﬁ =

where 7° and i are the roots of

Cran’l‘ + [4Cz~ +8CeGre—4CCoq=Gr(Cr+ Coo) l’lz

+9GCoo =

and A, B, C, and D are certain constants.

In the Mori-Tanaka procedure, one must first solve an aux-
iliary problem for a single fiber in an infinite matrix volume.
The displacements (71), (74), and (75) are admitted in the fiber
domain, while the displacements in the matrix are special forms
of (74) and (75) for a transversely isotropic or isotropic me-
dium. In any event, to assure boundedness of the displacements
at the origin, the terms which contain the negative powers of
n and n; must be excluded. The resulting admissible displace-
ment field are best written in terms of the transverse normal
stress o° as

beo ™
“f’E{ZI(Gn*‘C..) m(Cu*'Gu)lﬂ.( )

"2
+2((Gre + Coe) = M(Cre + Gro)ley (i) }°°52° (76)
bao r "
u‘ =4—G-;[[C"qf—(4c~ +Coo)la (3)

!
+ [Cﬁ'ﬁ - (AGIO + C~)]C| (%) } sinlo

u{ao

b [2 b\’
u‘,"sm [— re(Em+ 1) az+( ) Cz]°°52°

w22 Lo e ¢) e

ul =0,

an

where
Emm(2m™ + k™) /K",

and o° is the normal transverse stress applied at infinity. As
yet unknown constants a,, a;, &y, and c; have been introduced
to replace the A, B, C, D constants in (74) and (75). Since the
matrix is regarded as transversely isotropic, we have used the
connections between elastic constants to introduce the Hill's
moduli ¥ and m™.
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To complete the solution of the auxiliary problem, the four
unknown constants must be evaluated from the usual con-
tinuity requirements for the stresses g, dr and the displace-
ments u,, U, at the interface r = a. However, the resulting
equations are coupled, and are best solved numerically. Once
the constants are known, the phase stress fields under overall
transverse shear loading can be derived from the displacement
fields (76) to (77), and the appropriate constitutive relations
(1) or (4).

This completes the solution of the auxiliary problem, and
opens the way to evaluation of the Mori-Tanaka estimate of
the overall stiffness which contains the unknown transverse
shear modulus m. Of course, the above solution delivers the
auxiliary stress and strain fields in the phases in the cylindrical
coordinate system, and both the fields and the phase moduli
must be first transformed into the Cartesian system. As in
Chen et al. (1990, Section 3), we denote the cylindrical system
by the vector £, the fields themselves by primed letters ¢’ (§)
and ¢’ (£), and the phase properties in the ¢ system by L',
M’. Note that the factor 2 must appear in the shear terms of
the 6 x 1 strain vector. In the Cartesian coordinates, these
quantities are denoted by similar but unprimed letters.

At any point in a given phase r, the transformation of the
stress and strain fields between the current, cylindrical, and
the Cartesian components is written as

odx)=Ra, (),  e(x)=Se, (§), (78)

where, the transformation matrices R and S are related by R”
= §~'. Of course, in a transformation between the cylindrical
and Cartesian systems, R and S are functions of the angle ¢.
Next, write the phase constitutive relations, such as (4), in the
symbolic form:

o, &)=L/ (B)e, (§), ¢, () =M, (E)o, (§). (79)
Equations (78) and (79) provide the relations
04x)=RL, S 'eLx), e(x)=SM, R 'a(x) (80)

at each point x. Note that §, R, L, , M, may now be functions
of x, but for brevity in notation the argument will be omitted
in the sequel.

The local fields in (80) are related to the uniform, remotely
applied fields ¢® and ¢° through certain influence functions
A/x), B(x); their volume averages, the mechanical concen-
tration factors, appear in (34). Thus, under overall applied
strain, (32,), the local strain field in (80,) may be replaced by
the term A(x) ¢, and the result substituted into the formal
phase constitutive relation o, = L,e,. When solved for r, the
relation yields the result

L= lj RL'S™'Ax)dV, |AS.
V’

v, 8n

A similar operation on the local stress field in (80,), but under
boundary conditions (32,), leads to

M, = lS SM, R~ 'BAx)dV, B !.
VI

7 (83)

The above transformation relations are valid for any actual
composite material or its model. Of course, in the Mori-Tanaka
model one can employ the expressions (39) for A, and B, 10
find
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L= i} RLS™'T0dV, | T,
Vr v,

3

M, = 5-5 SM,R™'W(x)dV.[W, ' (8)
Id V’

Recall that the partial concentration factors and the under-
lving influence functions follow from the solution (77) of the
auxiliary problem, and the transformation relations (78). When
substituted into (83), they provide the necessary phase stiff-
nesses and concentration factors for evaluation of the overall
stiffness and compliance in (40). Of course, the procedure
yields all components of L and M. However, the magnitudes
of the moduli &, /, n, and p for the present system are already
known from (30) and (8), (10), (11), and (12), and only the
magnitude of m represents new information.

We note in passing that in a transversely isotropic solid with
the x,-axis of symmetry, the Hill’s elastic moduli and the stiff-
ness coefficients are related as follows:

Lu=n,Ly=Ly=lLy=Ly=k+m,
L13=k—m, Ly=m, L55=L“=p.

(84)

8 Closure

The formulation of the Mori-Tanaka method does not guar-
antee diagonal symmetry of the estimated overall stiffness ten-
sor. Indeed, it is easy to construct systems for which the
predicted stiffness is not diagonally symmetric. However, Ben-
veniste, Dvorak, and Chen (1991a,b) prove that the Mori-
Tanaka estimates are symmetric in all two-phase systems of
any geometry, and in those multiphase systems where all in-
clusions have the same shape and orientation, or the P tensor.
Such proof was also constructed for the unidirectional com-
posite reinforced by coated, cylindrically orthotropic fibers.
This suggests that the present estimates of overall stiffness for
all systems with aligned fibers or inclusions are diagonally
symmetric. An analogous conclusion for the randomly orien-
tated reinforcement is indicated by (65).

Both the Mori-Tanaka and the self-consistent methods pro-
vide approximations which are admissible only if they are
bracketed by available Hashin-Shtrikman bounds. For the
Mori-Tanaka method, this question was recently explored by
Norris (1989), who shows that the effective moduli estimated
by the Mori-Tanaka approximation for two-phase composites
always satisfy the Hashin-Shtrikman and Hill-Hashin bounds.
However, this property does not generalize to general multi-
phase composites. The status of the estimates for aligned plate-
let reinforced systems, and for multiphase random
reinforcement, remains to be established.
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Some Remarks on a Class of Uniform
Fields in Fibrous Composites

Y. Benveniste! and G. J. Dvorak®

1 Introduction

In a series of recent papers, Dvorak (1983, 1986) pointed
out that a one-parameter uniform strain field can be created
in certain fibrous composite media of any transverse geometry
by a superposition of a uniform overail stress with a uniform
change in temperature. Moreover, under such superimposed
loads, Dvorak and Chen (1989) found a uniform strain field
in a three-phase fibrous composite, and Benveniste and Dvorak
(1990a, 1990b) constructed uniform stress and strain fields in
two-phase media of any geometry and phase material sym-
metry. Finally, Dvorak (1990a) identified uniform strain fields
in both fibrous and general two-phase media of any phase
material symmetry in the presence of arbitrary but uniform
eigenstrains in the phases.

The existence of uniform strain fields is useful in solution
of problems which involve phase eigenstrains, e.g., thermal,
swelling, or plastic strains. If such eigenstrains are or are taken
as uniform, then it is possible to evaluate an auxiliary uniform
overall stress state which will change the initial strain field into
a uniform strain field in the entire volume. Of course, the
auxiliary stress needs to be removed, but that can be accom-
plished in a purely mechanical loading step. In this way, ei-
genstrain problems may be converted into much simpler
mechanical loading problems. For example, thermopiasticity
problems in composite media can be solved as mechanical
problems along a modified loading path. Many other appli-
cations of the technique can be found in Dvorak (1990a, 1990b).

This Note is concerned with Dvorak’s (1986) paper, where
a one-parameter family of uniform strain fields was created
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in a binary fibrous composite through a uniform temperature
change and proportional mechanical loading. The parameter
can be selected in many different ways, the actval choice in
Dvorak (1986) related the longitudinal normal stress and the
transverse hydrostatic stress in the matrix through a scalar
parameter p. The results included a derivation of the instan-
taneous effective thermal expansion coefficients of two-phase
composite aggregates with plastically deforming matrices. Even
though the derivation utilized an arbitrary parameter, it was
expected that the resulting effective thermal expansion coef.
ficients would be independent of that parameter. This was
verified in Dvorak (1986) by numerical examples, but not es.
tablished analytically. Moreover, since the overall expansion
coefficients depend on some overall moduli, the examples had
to make recourse to approximate micromechanical models for
evaluation of such moduli.

The present Note gives an analytical proof of the inde-
pendence of Dvorak’s (1986) final result for the overall thermal
expansion coefficients on the free parameter o. Although
Dvorak’s analysis applies to fibrous systems with transversely
isotropic phases, we restrict ourselves to the simpler case of
isotropic phases. First, the Note presents a simplified deri-
vation of the relevant results of the (1986) paper. Then, an
analytical proof shows that these results are independent of
the parameter p. The proof is completely general and does not
rely on any micromechanical model. Finally, it is shown that
the thermal expansion coefficients found with the uniform
fields technique coincide with those derived by Levin (1967)
from the virtual work theorem. This supplements a similar
conclusion reached by a different route in Dvorak (1990a),
and confirms that the uniform field technique, while offering
a much more extensive scope in applications, gives results in
agreement with those that follow from Levin’s approach.

2 Analysis

Let us consider a binary composite consisting of an isotropic
matrix reinforced by perfectly bonded, aligned, isotropic cy-
lindrical fibers of arbitrary cross-section. A Cartesian coor-
dinate system is chosen with the xj-axis aligned with the
direction of the fibers. As pointed out by Dvorak (1986), a
uniform strain field and a piecewise uniform stress field can
be created in this binary composite by superposition of a uni-
form temperature change with certain auxiliary tractions on
the external boundary. Let the desired uniform fields be de-
noted by &}; and €}, with s = f, m for the fiber and matrix,
respectively. They must satisfy the traction and displacement
continuity at the cylindrical fiber-matrix interfaces. Since the
fields are uniform, the continuity requirements are met if the
fields conform to the following conditions:

#i=oh=6n=6h=d 1))
#i=en, #h=i5. @

The shear strain and stress components of the auxiliary fields
vanish in the present situation. The &}, and 7} need not be
equal to each other, but are also uniform within each phase.
In other words, the a5 stresses are piecewise constant in the
fibrous composite, while all the other strains and stresses are
uniform throughout.

We now appeal to the familiar thermoelastic constitutive
relations, and express the phase strains in (2) under the con-
straints indicated by (1). Thus, Eq. (2), results in

(537 Ey) = (20/ Epya + afy = (65y/En)
~ (2vp/Ep)+amfy (3)

where E,, »,, a, with s = f, m denote, respectively, the Young's
modulus, Poisson’s ratio, and the thermal expansion coeffi-
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cient of the matrix and fiber, respectively; 6, is the uniform
temperature change. Similarly, under (1), Eqgs. (2), and (2);
become

I-v v - 4
. 4 ‘___l&/ + = Alsg-2 57 4
( E )a E, b+ ady ( E. >a E. Gy +anby. (4)

For a given temperature change, (3) and (4) provide two equa-
tions for the three unknown components &, &y, 67} of the
piecewise uniform stress field. This suggests that an additional
relation may be prescribed between these unknowns. In ac-
cordance with Dvorak (1986), we chose

% =03, &)

where p is an arbitrary parameter. From (3), (4), and (5) one
readily obtains

=501+ +vmEf(o~1)/(1 + vPEn)} 6

(l + v/)(af— (!,.)00
(1= v = 200+ p(vy= v)V/ Ey + (1 + v)Qvp— 1V Ef

Therefore, for any finite value of p, uniform fields can be
created in the fibrous composite by application of the stresses
(5) and (6) on planes x; = constant, together with tractions
resulting from & on the lateral surface, and by a uniform
temperature change 6, throughout. These uniform fields can
be used to derive the effective thermoelastic constants of the
composite.

At this stage we focus our attention on a fibrous composite
which is transversely isotropic on the macroscale and is sub-
jected to a uniform temperature change, while its external
surface is kept traction-free. By definition, the longitudinal
and transverse thermal expansion coefficients of the composite
are given by

)

a=

arfo=c &+ CmE ®

arfo=c &+t = /el +CmER 9)
where an overbar denotes an average over the volume of re-
spective phases and ¢;, s = f, m are the volume fractions.

The thermal strains on the left-hand side of (8) and (9) can
be derived from the uniform strain field. This is accomplished
by an application of a loading/unloading sequence where the
loading consists of 8, and 3, and the unloading is a subtraction
of the average surface tractions, which have been induced by
,. Then, (8) and (9) may be rewritten as

a 8o = &3~ (C/0)3 + Cp6) /EL + (20, /EL )6 (10
alo=é) - (1 - v)/Efé + (vi/EL) (cmpd +Ghy),  (11)

where E;, Er, v;, and »r are, respectively, the effective lon-
gitudinal and transverse Young’s moduli and longitudinal and
transverse Poisson’s ratios of the transversely isotropic fibrous
composite.

The expressions for &, &}; and &;, &/, obtained in (6), (7),
(3), and (4), render Eqs. (10) and (11) in the form

aL=am+(ay=aml(l + v }AL+ Bp)/(CL+ Do)  (12)
ar=am+{(ay~am)l +v)Ar+Bw)/(Cr+ D), (13)
where
A= | Bm 2| g, (+enEf]
E, E | E/| (+»E,
1 (1+vm)E;
b=t. E[ /(I-Hc/)E,,.]
CL=[L-(1—V,, ZI’MI’/)'P (l+l’,)(2]¢/—l)]
D =(vy~v,)/E, (14)
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l-v, l-vr » (1 +v)E,
Ar=——n———+=— - s
T Em Er E[_ C/[l (l + V/)Em]
Vm b (1 +v,)E,
Br=-lm 2
T M+EL[CM /(l+yf)Emjl

(15)

At this stage we ask whether the results (12) and (13) are
independent of the arbitrary parameter p, and whether these
expressions can be reduced to the following well-known for-
mulae, originally derived by a different approach by Levin
(1967)

(16)

_ as—an {31 —ZVL)_L
ay =0m+ ) ) [ EL X.
K Kn

ar=am+ —3(I_ZVL)VL—L], an

ar—am | 3
1 1 2k E; Ky
K, K.

where

K;=E/[3(1 - 2v,)] with s=f,m, (18)
and k denotes the effective plane-strain bulk medulcs for lat-
eral dilatation without axial extension.

In what follows, the equivalence between (12)-(13) and (16)-
(17), respectively, is established by recalling first Hill's (1964)
universal relations between the effective moduli of a binary,
transversely isotropic fibrous composite with cylindrical, trans-
versely isotropic phases. Two of these relations which will be
needed here are (see, for example, Hashin, 1983):

E = (CfEI+ CmEm)

o) o

= (Cfl'/'#' Cm¥Vm)
Awr—vy (L= LY [(L_L
(‘vf ) ("/ Km ")/ ( km @0

ki '=201+ v )(1-20)E; 1

and k is the same effective modulus appearing in (17). Equa-
tions (19) and (20) allow one to write

where

with s=f,m,

E =a+ by, -ll;—c+de (22)

with
a=(cly+CmEm) + {[4('/- ¥m) (Cppr+ Cmpm)]/ (k kl >}
=M Cc= (!L—!ﬂ)/(V/- Vm)u

1 1] e
ky ke

Let us now show the equivalence of (12) and (16). To this
end we first express »; in terms of E; and the constituent
properties through (22),. Then, (18) allows one to cast (16)
into the form

(23)

d= -4/b.
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1 f¢ -
ou_=u,.+[ l+'l__(.dl+" VE/

Vr~Vm EL V= Vm

+s_“_+_/£q>] (y—am) (24

D/— Vo

which involves only E; as the single effective elastic modulus.

Application of the same procedure to (14,) makes it possibie
to express the constant A, in terms of constituents properties
and E; only. It is now clear that for the parameter o to dis-
appear altogether from (12), the following relation must hold
between A;, 8;, C;, and D;:

AL/CL=BL/DL' (25)
which results in
(AL +B1p)/(C,+Dp)=8B,/Dy. 26)

Some aigebra shows that (25) is indeed fulfilled, and it becomes
then an easy matter to verify that one can use (26), together
with (14); and (14), to reduce Eq. (12) identically to (24).

Establishing the equivalence between (13) and (17) is similar
in principle to the procedure described previously. We start
by using (22) in conjunction with (18) and (21) and choose this
time to cast (17) in terms of the constituent properties and »,
only. After considerable manipulation, (17 can be written in
the form

ar=am+(ay~am)(e+fr )/ (a+bv) 2N
where @ and & are given by (23) and

e=al~vm(l+v)/(vy=va)l, f=fi+cih (28)
with

_ 20 + vk 2Kpm (9= ) = (1 + ¥m)(20m = DKk m ~ k)]
(kpm~K7) (vp—vm)

S
(29

Sr= = (L4 3)(1 + vp)[2K2(1 + v)(1 = 20m)
+ Zk}(l + )} = 20) + kK (8Vuy~ 4 + 20, + 20))]
/= vl (1 + vmdkm = k(1 + 29} (30)
Next we turn to Eq. (13). In analogy to (25) and (26), what
now needs to be established is that
Ar/Cr=BT/DT or AT/BT= CT/DT' an
or
(Ar+Bm)/(Cr+Dr)=Bs/Dr (32)
so that p disappears from (13). Furthermore, it needs to be
shown that
(l+v,)(Br/Dr)=(e+fv,_)/(a+by,_). (33)

The ratio Cy/Drin (31); easily follows from (15,), (15,), (14),,
(14), as

Cr/Dr=[En(l +v)(20~ 1)+ EAIL
— V= 20m¥p))/ IE/( vr= va)) (34)

which is seen not to contain any effective moduli. On the other
hand, the expression A7/Brin (31); does contain the effective
constants »r, Er, v;, and E; as seen from (14); and (16),.
At this stage, we recall the identity (see, for exampie, Hashin,
1983, Eq. 3.2.9)
(1 — )/ Er={E, +4ks})/(2KE,), (3s)

and make use of (22); and (22) to express all the effective
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moduli in (15) and (15), in terms of », only. The ratio 4,
Bt can eventually be written as

Ar/Br=[(1+v h)/(1 +v ))(Cyr/Dy) (36)
where
h=b/a— (End—-2c8/a)[2(1 — v} — CE] ™"

_ _(1+Vm)Ef
e-£. 1- 2]

J= ~Ep~vmb—Cg)/ (vna),

37

and a, b, c, d, are given by (23).

To establish the validity of (31),, it needs to be shown that
h = j; this follows after some algebra from (23) and (37).

Finally, to prove the validity of (33), By in (14)s needs to
be expressed in terms of v, and the constituents properties
from (22),. Then, the expressions for a, b, e, f which were
derived in (23) and (28) lead, after considerable manipulation,
to Eq. (33). This shows that (33) is indeed valid.

3 Conclusion

In summary, we have shown that Eqs. (12) and (13) derived
by the procedure described in Dvorak's (1986) paper are indeed
independent of the free parameter p, and that they reduce
properly to the forms (16) and (17) originaily derived by Levin
(1967). Of course, the proof has been constructed only for the
case of isotropic constituents, whereas Dvorak's results also
apply to transversely isotropic phases. Extension of the proof
to such systems should be possible, but it if beyond our present
scope.
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ABSTRACT

Local stresses caused by mechanical and thermal loads in high temperature
intermetallic matrix composites are evaluated using a finite element solution for a periodic
hexagonal array microstructure. Both uncoated and coated elastic fibers are considered.
The matrix is assumed to be elastic—plastic and insensitive to loading rates. Mechanical
properties of the phases are function of temperature. It was found that a CVD deposited
carbon coating can be quite effective in reducing thermal stresses at the matrix/coating
interface. Certain mechanical stress concentration factors, however, may be uﬁg:nted by
the compliant coating. In composite systems with a ductile matrix, tic rmations
reduce stress concentration and lead to stress redistribution. In such systems,
thermomechanical loading re?imu can be designed to reduce adverse local stresses
introduced during fabrication, for example, by hot isostatic pressing.

INTRODUCTION

It is well known that the overall behavior of fibrous composites is directly affected
by the local phenomena. For examnle, the overall performance of a comte may be
impaired if damage or instability is initiated in the phases or at their in . On the
other hand, the overall strength may be enhanced by plastic flow of the matrix Therefore,
evaluation of local stresses in fibrous composites is important in material selection,
evaluation and design under both thermal and mechanical loads.

The present paper is concerned with evaluation of the local stresses in high
temperature fibrous composites under thermomechanical loads. Specifically, the stresses in
uncoated and coated fiber reinforced intermetallic matrix composites are examined. For
unidirectional composites, the analysis was performed for aa idealised geometry of
the microstructure using the Periodic Haﬁ:)nﬂ Array (PHA) model (Dvorak and
Teply, 1985; Teply and Dvorak, 1988). is geometry permits selection of a
representative unit cell, the response of vhich is identical vith the response of
the composite aggregate under overall uniform stress or strain fields. The overall
response and local fields are then found in the unit cell using the finite element method.
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The results reported in this paper focus on the effect of fiber coating on the local
thermal and mechanical stress concentration factors in elastic as well as elastic—plastic
matrices. Thermal residual stresses generated by cooldown of unidirectional composites
from fabrication temperatures are also evaluated. The present study examines various
thermomechanical loading regimes that may be applied during the fabrication process to
reduce the tensile stresses in the matrix.

The paper begins with a brief description of the PHA model for unidirectionally
reinforced composites. Next, material properties foz the composite system examined in this
study are given. Two principal results obtained with the PHA model for intermetallic
matrix composites reinforced by uncoated and coated fibers are then presented and
discussed. One is concerned with the effect of fiber coating on thermal and mechanical
stresses, the other examines the effect of the thermomechanical loading regime applied
during fabrication of composites by hot isostatic pressing on the local stresses.

THE COMPOSITE MODEL

Several material models have been developed for elastic—plastic fibrous composites
under various approximations of the microgeometry. While averaging models, such as the
self—consistent model (Hill, 1965) and the Mori-Tanaka (1973) method, approximate the
microgeometry by a single inclusion embedded in an infinite mass of a different material,
periodic models (Aboudi, 1986; Dvorak and Teply, 1985, Nemat—Nasser et al., 1982)
consider actual details of the microstructure. The latter class of models assumes certain
periodic arrangements of the fiber in the transverse plane of the composite and performs
the analysis on a unit representative cell of the periodic microstructure. Other models
which are phenomenological in nature have beem also developed (see for example the
Vanishing gnber Diameter (VFD) model by Dvorak and Bahei-El-Din, 1982; and the
Bimodal Plasticity Theory (BPT) by Dvorak and Bahei—El-Din, 19872 but are more
suitable for prediction of the o response of composites. A survey of the above models
can be found in the reviews by Bahei—El-Din and Dvorak (1989) and Dvorak (1991).

An essential requirement in the theoretical model used in the present study is the
ability to represent details of the local stress and strain fields in the phases of a
unidirectionally reinforced composite subjected to uniform overall stress and thermal
change. This narrows down our choices to the periodic models. In particular, we employed
the PHA model developed by Dvorak and Teply 151985) and Teply and Dvorak (1988)
which we have verified experimentally (Dvorak et al., 1988; Dvorak et al., 1980). In this
model, the microstructural geometry iz the transverse plane of a unidirectionally reinforced
fibrous composite is represented by a periodic distribution of the fibers in a hexagonal
array. Cross section of the fibers is approximated by a nx6—sided polygon. An example of
the PHA microgeometry with dodecagonal fiber cross section is shown in Fig. 1a. The
hexagonal array shown in I-:‘f 1a is divided into two unit cells, as indicated by the shaded
and unshaded triangles. Under overall uniform stresses or strains, the two sets of unit cells
have related internal fields. Accordingly, under properly prescribed periodic boundary
conditions, only one unit cell from either set needs to be analysed. Figure 1b shows a three
dimensional view of one of the unit cells.

The actual analysis is performed by the finite element method. The unit cell is
subdivided into a selected number of subelements in the matrix, fiber, and coating
subdomains. A fairly refined subdivision is required for evaluation of the local fields.
Figure 2 shows two eumglel of such a finite element mesh. The results reported here were
found with the ABAQUS finite element program. Resident constitutive relations were
used for the homogeneons phases. The fiber and the coating were assumed elastic, whereas
the matrix was assumed elastic—plastic, inviscid, and follows the Mises yield criterion.
Stress—plastic strain response of the matrix was assumed to follow a linear strain hardening
behavior, and the matrix yield surface to follow the Prager—Ziegler kinematic hardening
rule. Thermoelastic properties of the phases as well as the matrix yield stress and plastic
tangent modulus are piecewise linear functions of temperature.
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{a) Transverse plane, (b)

Fig. 2 Two refined meshes of the PHA unit cell.

Fig. 1 Microgeometry of the Periodic Hen%ma.l Array (PHA) model,




THE COMPOSITE SYSTEM

An intermetallic matrix composite system reinforced by aligned continuous fibers is
considered. The matrix is a nickel—a'uminide compound (NijAf), and the reinforcement is
a carbon—coated or uncoated silicon-<carbide fiber (SCS6) at 25% volume fraction. The
carbon coating thickness is 10 um. Tables | and 2 show naterial properties of the phases.
Thermoelastic constants of the silicon—carbide fiber and the carbon coating are aot
function of temperature, while those of the nickel-aluminide matrix vary with
temyerature. Also, the yield stress and the plastic tangent modulus of the NijA{
compound vary with temperature. Figure 3 shows variation of the tensile yield stress with
temperature for the NiyA{ matrix. Unl kc other aluminide compounds, for example TisA{4
for which the yield stress increases monotonically with decreasing temperature (see Fig. 3),
the yield stress of the nickel-aluminide compound decreases with decreasing temperature if
the latter is below 600°C. This causes plastic deformation of the matrix during cooldown
of NijAl-based system which may help in reducing the adverse thermal residual stresses.
RESULTS

t i 1 tre

To examune the effect of fiber coating on the local thermal and mechanical stresses,
we plotted stress contours in the unit cell for the transverse local stress o2;. Figures 4 and
5 show the results for the SCS6/NisAl composite in the elastic range under thermal
loading and overall transverse tension, respectively. It was assumed that the composite is
stress free at the fabrication temperature of 12000C, and small increments of a temperature
decrease and transverse tensile stress were applied separately. The local stress ;2 found
from finite element solution of the uzit cell was then normalized by the applied load and
plotted in the transverse plane. The unit cell is indicated in Figs. 4 and 5 by the dashed
triangular boundary. The contours outside the unit cell were generated using the periodic
properties of the local stress field.

It is seen from Fig. 4a tlLat tensile hoop stresses, and compressive radial stresses
develop in the matrix if the temperature is decreased, whereas compressive hoop stresses
develop in the fioer. These stresses are caused by the mismatchk between the thermal
strains generated in the fiber and the matrix. At the fier/matrix interface in the system
under consideration, the matrix tends tc move in the volume Gccupied by the fiber when
the temperature is decreased, but is prevented by the stiff fiber which deforms at a muck
smaller temperature rate. Consequently, radial cracks ray develop in the matrix under
cooling from the fabrication temperature. If, on the other hand, the -_efficient of thermal
expansion of the fiber was larger than that of the matrix, local damage under temperz.ure
red&;lctigger would take the form of disbonds at the fiber/matrix interface, and radial cracks
n the 8.

Applying a carbon coat to the fiber causes significant reductions in the local thermal
stresses, particularly at the fiber/matrix interface, Fig. 4b. Compared to the matrix and
the fiber, the carbon coating has a3 much smaller elastic stiffness in the transverse plane,
and as such it can accommodate the thermal strains developed in the phases. Conversely,
the coating enhances sharply the mechanical transverse stresses as f<en in Fig. 5. Ths
tradeoff must be carefully considered in design of composites.

If the matrix deforms plastically, the local stresses are reduced substantially,
particularly under tnermal loads. This is seen in the contours plotted in Figs. 6 and 7 after
loading the composite well into the plastic region so that the matrix subdomain is fully
plastic. In this case, the matrix is very much compliant compared to the fiber and
therefore can deform without developing large stresses. In fact, the stiffness of the matnx
in the plastic range is comparable to the stiffness of the carbon coating so that the
diﬁ'erﬁences in the stresses developing in the coated and the uncoated systems are not
significar..

These results indicate that material selection may favor uncoated fibrous systems
with ductile matrices over coated elastic systems. Under repeated losds, however, low
cycle fatigue may develop in the matrix under cyclic plastic straining leading to nucleation
of :‘ma.:l1 cracks. Certain tradeoffs therefore exist and must be applied in material selection
and evaluation.
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Table 1 Material properties of SCS6 fiber and carbon coating

| 2 3 ‘ s s ?
E Ey G, Gy “ o ! %
GPa  GPa GPa  GPa (10"/°C)
SCS6 fiber 413.6 413.6 159.1 159.1 0.3 46 46
Carbon coating 172.4 6.9 14.5 38 0.3 1.8 28
iongitudinal Young'’s modulus
Transverse Young’s modulus
:Longitudinz.l shear modulus
“Transverse shear modulus
sLongitud.ina.l Poisson’s ratio
'Long‘tudinl coefficient of thermal expansion
7Transverse coefficient of thermal expansion
Table 2 Material properties of Ni,A¢ matrix (Stoloff, 1989)
T E v a' Y g
oC GPa 10°/°C MPa GPa
1200 134 0.32 20.6 137 8.70
994 142 0.32 19.0 279 7.10
776 150 0.32 17.2 459 1.50
873 154 0.32 16.4 587 7.70
642 155 0.32 16.1 564 7.75
578 158 0.32 15.6 538 7.90
376 165 0.32 143 356 825
327 167 0.32 14.0 279 8.35
206 172 0.32 13.4 156 8.60
127 178 0.32 13.0 110 8.75
21 179 0.32 12.5 79 8.95
"l‘empentnre
’Young’l modulus
‘Poiuon’l ratio
‘Coefficient of thermal expansion
s’I‘enn'lc: yield stress
“Tensile plastic tangent modulus
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Fig. 3 Yield stress—temperature curve for NijA¢ and Ti;Al compounds.

This part of our study of local stresses in fibrous system is concerned with
evaluation of the thermal residual stresses generated during fabrication and examination of
possible thermomechanical loading regimes that can be applied during cooldown to room
temperature so that high tensile thermal stresses in the matrix can be reduced. The results
presented in the preceding section indicate that plastic flow of the matrix causes
redistribution of the local stresses and reduction of the interfacial stresses in the matrix.
Consequently, in fabrication of intermetallic matrix composites by hot isostatic pressing
(HIP), one can select the optimum temperature/pressure path to follow so as to minimize
the adverse local stresses in the phases, particularly the matrix. This, of course, can be
accomplished only for composites with a ductile matrix.

Considering the SCS6/NijAl! composite, we first examined the local stresses
retained in the system at room temperature after exposure to HIP temperature of 12000C
and hydrostatic pressure, g,, of 200 MPa when the room temperature/zero pressure
condition is reached through the various unloading options shown in Fig. 8. In particulaz,
we compared the itude of the local interfacial stresses in the phases of uncoated and
coated systems for the various cases listed in Fig. 8. In each case, the composite was
assumed to be free of internal stresses at the fabrication temperature (12000C), and the
hydrostatic pressure o, was applied in small increments up to 200 MPa. Although the
overall load applied in this segment of the loading path is isotropic, the matrix stress is not
necessarily isotropic. Nonetheless, the matrix isotropic stress was dominant so that the
matrix phase, which was assumed to be plastically incompressible, remained elastic under
200 MPa hydrostatic pressure and 1200°C. In a typical HIP process, the composite is
treated at the HIP condition for a specific duration. In our simulation, however, we
assumed that the matrix is inviscid, and continued to unload the composite from the HIP
conditions to the room temperature and atmospheric pressure. Plastic flow of the
nickel~aluminide matrix occurred in all the cases shown in Fig. 8 but the onset of yielding
varied among these cases. The local stresses retained in the composite at room temperature
are, therefore, expected to vary as well among the loading cases shown in Fig. 8.
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(/AT o, contours (MPa/°C)
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Fig. 4 Transverse thermal stress concentration factors computed in & S i
composite in the elastic range, %;g;nmuﬁ“ﬁb«"' 4 SCS8/NisA¢
(b) carbon~coated Eiber.
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Fig. 5 Transverse mechanical stress concentration factors computed in a SCS6/Ni3Al
composite in the elastic range under overall transverse tension,
(a) uncoated fiber, (b) carbon~coated fiber.
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Fig. 6 Transverse thermal stress concentration factors computed in & SCS6/NiAL
composite in the elastic—plastic tmgﬁe, (a) uncoated fiber,
(b) carbon—coated fiber.
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Fig. 7 Transverse mechanical stress concentration factors computed in 8 SCS8/NisAl
composite in the elastic~plastic range under overall transverse tension,
(a) uncoated fiber, (b) carbon—coated fiber.
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Fig. 8 Possible variations of the temperature/hydrostatic pressure loading path
applied to unidirectional composites during hot isostatic pressing.

Comparing the magnitude of the local interfacial stresses in the phases of the
uncoated and the coated SCS6/NijAl composite, we found that the stresses computed in
cases (a), (b), (d)—(e), Fig. 8, are very similar. On the other hand, the sdverse stresses
were substantially reduced when the hydrostatic pressure, o,, was sustained during
cooldown of the composite, Fig. 8c. Moreover, the stresses benefit from increasing the
magnitude of the hydrostatic pressure applied during the HIP process. Specifically, tne
;adhl‘e Pmm:bo fg‘n;d in the phases were reduced substantially when o, was incrweti from

ato s

Table 3 compares the interfacial stresses computed in uncoated and coated
SCS6/NisAl composites when the thermomechanical loading paths shown in Figs. 8a,c
were agplied. The stresses found in case (c) under hydrostatic pressure of 200 MPa and
400 MPa are shown. The table lists the radiil stress, o.y, tangential stress, oy, and axial
stress, oy, found at the interface at either point 'a’ or point '’ indicated on the unit cell
shown in the inset in Table 3. The isotropic stress in the matrix, (0o)a, found in each case
is also indicated. It is seen that the tensile stresses at the fiber/matrix interface have been
reduced in the uncosted composite by maintaining the hydrostatic pressure while cooling
the composite down to room temperature. More reductions in the tensile stresses are
achieved by devating the hydrostatic stress to 400 MPa. For example, the matrix hoop
stress is reduced by 18% when the pressure is 200 MPa, and by 37% when the pressure is
400 MPa. It appears that the tensile stresses can be reduced further by increasing the
hydrostatic pressure during the HIP process. However, the magnitude of t that
can be applied during fabrication is usually limited by the equipment in the HIP
process.

The matrix interfacial tensile stresses in the coated system have been also reduced,
bat ¢ 2 lesser extent, by following the loading path indicated in Fig. 8¢, Table 3. The
hoop stress in the coating, however, is not affected by the thermom ical path applied
during fabrication. Except for the axial stress, elevating the pressure applied during the
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Table 3 Maximum interfacial stresses found in a SCS6/Ni;Al composite
at room temperature following hot isostatic pressing

Pu
) T T T
® 1200°C 1200°C 1200°C
5 \.zv 21°Cc 21°¢
re—— A—————vvetm——
-200 MPu % a 200 MPa 0 a 400 \iPe % g
Interfacial Uncoated Coated  Uncoated Coated  Uncoated Coated
Stress (MPa) Fiber Fiber Fiber Fiber Fiber Fiber
(oer)a —98Qb —840b ~79Qb -94Qb —60Qb -391Qb
(ott)a 190Gb 158@b 155Gb 152@% 120Qb 152@b
(ou)e 198Qb 186@b 179@b 1430b 161Qb 141Gb
(oee)e - 1850a - 188Qa - 188Qa
(on)e - ~668Qb - —633Gb - —6240Qb
(oer)t —98Qb  -1100b -79@b -122@b -50@b  -121Qb
(oue)e -940a2  -108Qs -76Qa -117Qa -59@a -1160a
(o)e —605@b  -364@Gb  -552@b  —280@b  —500@b  -261Q@b
(%0)a 970b 87QGb 850 67Qb 740b 67Qb
Table 4 Matrix internal stresses found in a SCS8/Ni3Al composite
at room temperature following hot isostatic pressing
5  § T T
i-tm 1200°C 1200°C
€
4 21 21c il
e 10 g 200ure 19 ay <ous 19 g,
Stress at Uncoated Coated  Uncoated Coated  Uncoated Coated
'¢’ (MPa) Fiber Fiber Fiber Fiber Fiber Fiber
(o) 213 213 195 179 177 177
(2 ) 115 128 96 162 76 164
(d0)a 101 108 90 106 (§ 106
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Hlf’ process does %ot affect thel stresses in the coated :%nem. In any case, the matrix
isotropic siress, and consequently damage initiation, is affected by the thermomechani
loading path followed during the HIP m‘: d al

_ Table 4 lists the local stresses found in the matrix internal point 'c’ (see inset of
unit cell). The axial stzess, (1)), the transverse stress, (¢21)e, and the isotropic stress,
(do)e, are shown for three thermomechanical loading regimes applied during the HIP
process. It is seen that the stresses in the uncoated system are affected by the HIP regime.
Substantial reductions in the matrix stresses are achieved by cooling down the composite
under constant pressure, and by elevating the hydrostatic pressure applied during the HIP
run. While these factors reduce the matnx axial stress in the coated system, the transverse
stress is increased and the isotropic stress is unchanged.

The stresses found in the phases after the composite was reheated to 1200°C were
not affected by the loading path, or the magnitude of the hydrostatic pressure, o,, applied
during the HIP process.

DISCUSSION

A particular CVD deposited carbon coating can be quite effective in reducing the
adverse thermal residual stresses generated during fabrication of fibrous composites. The
fiber coating, however, enhances certain local mechanical stresses. In any case, the
significance of these effects depends on the relative stiffness of the matrix, the fiber, and
the coating. In particular, plastic flow of the matrix causes substantial reductions in the
tensile interfacial stresses in the phases. The implication is that mechanical compatibility
in fibrous composites is not only a function of the thermal properties of the phases, but also
depends on the constitutive behavior of the phases. Accurate evaluation of thermal
resig;:.l stresses, therefore, can be only performed with appropriate micromechanical
models.

Plastic flow of the matrix can be utilized to reduce the temsile local stresses
generated during hot isostatic pressing (HIP) of fibrous composites. Selection of the
temperature/pressure path as well as the magnitude of the hydrostatic pressure applied
during the HIP treatment should focus on inducing plastic deformation in the matrix early
during the cooldown cycle. In our study of the local stresses in a unidirectional
SCS6/Nij3A! composite we found that the matrix interfacial tensile stresses are lowest
when the isotropic pressure applied during the HIP process was maintained during coolinﬁ
to room temperature. Also the local stresses can be reduced by increasing the HI
isotropic pressure. Our yet unpublished results indicate that more reductions in the
thermal residual stresses can be achieved through plastic deformation of the matrix if the
hydrostatic pressure applied during the HIP process is confined to the composite's
transverse plane. The results which qualify this proposition are published elsewhere
(Bahei—~EL—Din et al., 1991).
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UNIFORM FIELDS, YIELDING, AND THERMAL HARDENING
IN FIBROUS COMPOSITE LAMINATES

YeHia A. BAHEI-EL-DIN!

Cairo University

Abstract— A uniform strain field is found in fibrous composite laminates with isotropic ma-
trix and transversely isotropic fiber under uniform phase thermal strains and overall uniform
stresses which are functions of thermoelastic properties of the phases. The only restriction on
the structure of the laminate is that the plies be identical except for the fiber orientation. Ther-
moelastic properties of the phases are functions of temperature. The resulting uniform strain
field in the Jaminate is isotropic. The corresponding stress field is uniform and isotropic in the
transverse plane of each lamina and piecewise uniform in the longitudinal direction. In any case,
the matrix stress is isotropic which causes no plastic deformation in plastically incompressible
materials. The solution leads to a correspondence between thermal and mechanical loads in lam-
inates which converts, in an exact way, any thermomechanical ioading path to an equivalent
mechanical path. Application of the thermomechanical uniform fields to initial yielding of com-
posites identifies thermal hardening of the overall yield surface with translation along a stress
vector that is a function of the phase thermal strains. Examples of thermal hardening in inter-
metallic matrix composite laminates are shown.

1. INTRODUCTION

It is well known that the stress and strain fields in heterogeneous media subjected to uni-
form boundary conditions are, in general, not uniform. The existence of uniform fields
in heterogeneous media, particularly two-phase fibrous composites, under overall uni-
form fields and phase thermal strains has been shown in many publications (Dvorax
[1983,1986,1987); DVORAK & CHEN [1989]; BENVENISTE & DVORAK [1990]). A general
evaluation of uniform fields in two-phase media of arbitrary geometry has been worked
out recently by Dvorax [1990a]. It was shown that local uniform stress or strain fields
can be created by uniform phase eigenstrains and certain uniform overall stress or strain
fields which are functions of the eigenstrains. Moreover, Dvorax [1990a] found that
a uniform strain field can be created by overall stress or strain fields that have one free
parameter that can be selected at will. These uniform fields have several applications
in fibrous composite media. A particularly useful result, which was found by Dvorax
[1983,1990a] and BENVENTSTE and Dvorax [1990) for two-phase media, is the correspon-
dence between thermal and mechanical loads.

The present study is concerned with evaluation of uniform fields in fibrous compos-
ite laminates and their application to thermomechanical loading And yielding probiems.
The probiem can be stated as follows: if the phases of several identical laminae, which
are bonded together with variable fiber orientation to form a symmetric laminate, are
subjected to uniform thermal strains, we wish to find a strain state that is spatially uni-
form in the plane of the laminate. Since the laminae have different fiber orientations,
the requirement of uniform in-plane strains implies that the strains must be isotropic
in the plane of the laminate.

'Formerly research associate professor, Department of Civil and Environmental Engineering, Rensseiser
Polytechnic Institute, Troy, NY, USA.
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The solution to this probiem can be found by a decomposition procedure that utilizes
the uniform fields found by BENVENISTE and Dvorax [1990] and DvorAk {1990aj for
unidirectional composites. The procedure consists of decomposition of the laminate into
separate plies and application of the temperature change to each individual ply. Exist-
ing solutions for uniform strains in unidirectional composites under phase eigenstrains
are then used to reassemble the laminate maintaining a uniform strain field in each ply.
In certain cases, the strain fields found in the different plies are not compatibie due to
the variation in fiber orientation. In these cases, another uniform strain field is created
by mechanical loads applied to the individual layers and superimposed on the strain field
created by the phase thermal strains. The lamina stresses are found from compatibility
of the total strain field in the plane of the laminate. Finally, the laminate overall stress
is determined from equilibrium with the lamina stresses.

Section 11 evaluates uniform strain fields in unidirectional fibrous composites and lam-
inates under phase thermal strains. The solution leads to a correspondence between ther-
mal and mechanical loads in laminates which is introduced in section I1I. Section IV is
devoted to evaluation of overall yielding in laminates where a general description of the
overall yield surface is given and followed by a specific evaluation using the bimodal
theory (Dvorak & BaHEI-EL-Dv [1987]). Using the uniform fields constructed in lam-
inates, the effect of temperature variations on the overali yield surface is determined in
section V. Finally, examples showing the effect of cool-down from fabrication temper-
atures on the bimodal yield surfaces of specific intermetallic matrix composites are given
in section VI.

Throughout this study, (6 x 1) vectors are denoted by boldface, lowercase Greek or
Latin letters. A superimposed prime on a boldface, lowercase Greek or Latin letter
denotes a (3 x 1) vector, whereas unprimed boldface, uppercase Latin letters denote
(3 x 3) matrices, unless otherwise indicated. The transpose of a matrix A is denoted
AT, and the inverse is denoted A~'. Scalars are denoted by lightface letters. The cus-
tomary indicial and contracted notations are interchangeably used for stress and strain
components.

I1. UNIFORM FIELDS IN FIBROUS MEDIA
11.1. Unidirectional composites

Consider a unidirectionally reinforced lamina consisting of an elastic cylindrical fi-
ber aligned parallel to the x,-axis of a Cartesian coordinate system, and embedded in
an elastic matrix. The %, %;-plane coincides with the transverse plane of the fibrous lam-
ina. The two phases are assumed to be homogeneous and perfectly bonded. A trans-
versely isotropic fiber and an isotropic matrix with thermoelastic constants that vary with
temperature are considered. The total phase strain ¢, caused by a uniform stress e, and
a temperature change 6 from a reference temperature 8, is given by

0
¢ =M, (0)e, + | m;(6)db, 4}

where M, is the elastic compliance matrix corresponding to the current temperature and
m’ is a list of the coefficients of thermal expansion of the phase. The incremental form
of (1) is found as

de, = M,(0)de, + m,(s,.8)db, )
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m,{a,,8) = dbj;ow) o + mi(). (3)

The thermomechanical coupling implied by the first term in (3) is due to variation of
the elastic compliance with temperature during application of the thermal change dé.
This, however, does not suggest that the response is path dependent. On the contrary,
the accumulated mechanical and thermal strains found by integration of (2) and (3) over
a specified thermomechanical loading path are uncoupled and independent of the ther-
momechanical loading sequence, eqn (1). To avoid this kind of ambiguity, our deriva-
tion of the uniform fields will, in some instances, start with evaluation of cumulative
fields and then derive the incremental form of the solution.

Assuming the unidirectional iamina to be free of internal stresses, we first consider
a temperature change (6 - 6,), and find a uniform strain field in the entire composite.
This can be achieved by the following decomposition sequence, which was outlined by
BENVENISTE and Dvorak [1990] and Dvorak {1990a). Separate the fiber and matrix
phases from each other and apply the uniform thermal strain given by the second term
of (1). To reassemble the composite, the phases must be compatible. This is achieved
by applying to each phase unknown tractions derived from the auxiliary uniform stress
field

o7 (X) = ¢ (X) = o7, 4)

§2(R) = é2(X) = é°. 6)

From (1), (4), and (5,), the overall stress ¢ is found as

[}
0% = [M/(8) =M, ()]~ | [m[,(8) — m}(8)] db. )

8o

The increment of the auxiliary stress can be found by differentiating (6) after premul-
tiplying both sides of the equation by the matrix [M,(6) — M, (8)]. Hence,

dé = [M/(6) - M, (6)]"' [m,,(#°,68) -~ m/(&°,0)] dF, )

where m,,r = f,m, is given by (3). Using the explicit form of the elastic compliance
matrices M, and M,, and the coefficients of thermal expansion m}, m;, for transversely
isotropic fiber and isotropic matrix, we find that the auxiliary stress in (6) is axisymmet-
ric and vector m,, eqn (3), has a transversely isotropic form. Hence, the incremental
auxiliary stress field given by (7) is also axisymmetric:

dsf = dS§ =s§db,  daf =dof =dS§=spds, dif=0, j=4,56. (8)

The coefficients s and s# are found from (3), (7) as

aam; — 2bamy -bam; + camy

(ac - 2b?%)

' 6

st =

54 = (ac = 2b%) °
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n o (l=vp) = vm L1
= - , b= + —, c= - =,
= %E] " T E. E] T E, E] " E, (19
dc db
AmL—m‘L—m’[’=—5Sj+2ﬁ5%+3{—5m. (11)
Amr=m{-—m?=d—35j+%5%+3¥—3m- (12)

Young's modulus and Poisson’s ratio of the matrix are denoted £,,, v,,, and those of
the fiber associated with loading in the longitudinal direction %, are denoted E/, »/.
The constants n,, k, denote Hill's moduli for the fiber (Hot [1964]). The symbols m7
and m7%, r = f, m, denote the components of the thermal strain vector m,, eqn (3), in
the axial direction and transverse plane, respectively, whereas B{ , 84 denote axial and
transverse coefficients of thermal expansion of the fiber, and 3,, denote coefficient of
thermal expansion of the isotropic matrix.

According to (5), the strains are uniform in the composite aggregate. From (2), (5,),
and (8) we find

déf = El (58 — 2vpsé + E,mT] db, (13)
dé§ = déf = El [S4(1 = vpp) — ¥ms2 + E.mT] db, (14)
dé? =0, j=4,5.6. (15)

If both the matrix and fiber are isotropic, the above solution reduces to

dof = do§ = dos = srdb, do} =0, j=4,5,6, (16)
déf = déf = déf = hdf, dé’ =0, j=4,5,6, n
St = =3(my—my)/(1/K; — 1/K,), (18)
h=57/3Kpn + Mp = (Kmmpy = K;my)/ (K — K), (19)

where X,, r = f, m, is the bulk modulus and m, denotes the component of the isotropic
thermal strain vector m,, eqn (3). In this case, the stress and strain fields are isotropic
and spatially uniform in the entire composite lamina.

If thermoelastic properties of the phases are functions of temperature, the solution
at a given temperature 6 is found by integrating (8)-(15), or (16)=(19). However, since
the phases are elastic and their thermomechanical response is path independent, the so-
lution can be easily found at the current temperature by reducing eqns (8)~(15) or (16)-
(19) to the temperature-independent form, in which the temperature derivatives in (11)
and (12) vanish, and the coefficients of thermal expansion of the phases, 8., 87, 8%,
are replaced by the average thermal strain per unit temperature computed over the tem-
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perature range (6 ~ 6,). For example, 3., is replaced by 3, = (/s Bm(8) db}/ (6 - 6y).
Similar expressions define the average thermal strains 3/, 3/ forothe fiber.

In this way, uniform strain and stress fields can be created in unidirectionai compos-
ites under a thermal change df if the composite is simuitaneously subjected to mechai,-
ical load do°. which is a function of the thermoelastic constants of the phases. Since
the fields are uniform, the solution is exact regardiess of microstructural details of the
composite. If one phase is at most transversely isotropic, the overall stress and strain
fields are axisymmetric. On the other hand, the overall fields are isotropic if both phases
are isotropic. In the latter case, the strains in any longitudinal plane are independent of
the fiber orientation in that plane. This feature is useful in analysis of laminates as dis-
cussed in the sequel.

Uniform strain fields can also be created by mechanical loads. Considering an over-
all uniform stress da? applied to a stress-free unidirectional composite, while the cur-
rent temperature is held constant, we wish tc find the magnitude of dé® which causes
a uniform strain field in the entire composite. This is the homogeneous part of a more
general problem considered by Dvorak [1990a). The solution is again obtained with a
decomposition sequence in which the phases are separated and subjected to certain sur-
face tractions of unknown magnitude, which cause uniform stresses da? in the phases.
The composite is then reassembled satisfying the constraint equation

déf(X) = déb (%) = dé®, (20)

as well as the traction equilibrium condition at the cylindrical interfaces between the fi-
ber and the matrix. Since the local stresses are uniform, then

dé? = ¢, de? + ¢ dat™, @1
d&/b =d&,bj=d5fm, Jj=23,...6, (22)

where ¢, and c,, are volume fractions of the phases such that ¢, + ¢, = 1.

Equations (21) and (22) contain seven unknown stresses. From (20,), we obtain the
following system of six equations for the unknown stresses dof/, doP™,da?, j=2,3,...6
(Dvorak [1990a)):

6
M/ dsl ~M7det™ + 3 (ML ~MM)ds? =0; i=1.2,...6. 23)

=2

One of the unknown stresses may be selected as a free parameter, the remaining stresses
are found by solving the above system of equations.

For isotropic matrix and transversely isotropic fiber, the solution of (23) is found, af-
ter some algebra, as:

dsY = v,dS?,  déP™ = v, dS?, 29
dé? = do? =dSp, daf=0, j=4,5,6, 29%)
vy = (E{72kp = (1 + vo)EL73Knm + 26{(v] = va)) /(#] = ¥m), (26)

Y = [Em/2ks + v (2] + 1) = 1)/ (v] = vm). @n
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Note that the solution in (24)-(27) exists only if v{ # v,,. The solution for the general
case where this condition is violated is given by Dvorak [1990a].
The overall axial stress is then found from (21) and (24) as:

dé? = dSS=3dSE. ¥ =Crvs+ CmYm. (28)
The overall strain dé® is found from (20). Considering (20,), we find
dé? = h, dS%, déf = dé? = h,dS2, de'f’ =0, j=4,5,6, 29

_ 12k, ~ (1 +v,) /3K,

—vm/2k; + v{(l + v,)/3K,,
(v] = vm) '

(y{ - "'n)

hl , hz = (30)

It is seen that application of an overall axisymmetric stress dS? in the axial direction
and dS# in the transverse plane causes a spatially uniform strain field in the compos-
ite and a uniform local stress field in the phases. The magnitudes of dS2 and dS% are
related by eqn (28). Eitner dS2 or dS2 may be selected as a free parameter in the solu-
tion which depends on the elastic properties of the phases and their volume fractions.

I1.2. Laminates

Consider a symmetric laminate consisting of 2n identical unidirectionally reinforced
thin laminae in which the matrix is isotropic and the fiber is transversely isotropic, and
whose thermomechanical properties vary with temperature. Fiber volume fraction is
equal in all plies, but ply thickness can be different. The ply volume fraction is defined
as ¢, = ,/t, where 1, is the ply thickness and 2¢ is the laminate thickness. The plane of
the laminate coincides with the x, x,-plane of a Cartesian coordinate system (Fig. 1),
and is parallel to the X, x,-planes associated with the laminae. Fiber orientation of lam-
ina i is specified with the angle ¢; between the X, -axis and the x,-axis. The plies are as-
sumed to be perfectly bonded together such that they deform equally in the x, x,-plane.
If the phases of all the laminae deform with the uniform thermal strain ],'omi(O) dé, we
wish to find a strain field which is spatially uniform in the entire laminate.

This problem can be solved by applying a decomposition approach similar to that em-
ployed for unidirectional composites and utilizing the uniform fields found in the pre-
ceding section. Specifically, we first decompose the laminate into separate plies, apply
the temperature change (8 — 8,) to each lamina, and recall the uniform fields found in
section 11.1. The next step is to reassemble the laminate maintaining strain compatibil-
ity among the layers in the x, x,-plane. Since the plies have different fiber orientations,
strain compatibility among the plies in the x; x;-plane can be achieved if we require the
uniform strain field ¢ in each lamina to be isotropic in the x, x;-plane:

dé, = di,. @an

In what follows, we find the solution for two cases: a composite laminate with trans-
versely isotropic fiber and isotropic matrix, and a composite laminate with isotropic
phases. The solution is found in incremental form for temperature-dependent phase
properties. As indicated in section [1.1, the solution at the current temperature 6 can be
obtained either by integrating the resulting equations, or by evaluating the solution using
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Fig. 1. Geometry of a fibrous composite iaminate.

the elastic constants given at 8 and replacing the coefficients of thermal expansion of
the phases by their average over the temperature range (8 — 6).

Consider first the case of transversely isotropic fiber and isotropic matrix. In this case,
the uniform strain field, dé?, found in each unidirectional lamina under the uniform
temperature increment d@ and the auxiliary stress field dé°, eqns (13)-(15), does not
satisfy (31). The required field can be found by superposition of dé° and the uniform
strains dé®, eqns (29) and (30), caused by the unknown overall axisymmetric stresses
dS? and dS3. Satisfying (31) with the total strain (dé® + dé®) and using (28,), the mag-
nitudes of dS2 and dS? can be found. The local and overall fields are then obtained by
superposition of the two solutions. The resulting lamina stresses in the X; coordinate
system are given by

do, = s, d6, do, = doy = sy d8, do; =0, j=4,5,6, (32)

s _lall = ym) + (@ + b)F)Aam, = (2b(1 = va) + (c+2b)'y]4mr 33)
T (ac = 2b%)(1 = v,)

= (a + b'y,..)Am,_ (Zb + C'Ym)AmT (34)

(ac = 2b%)(1 = vp)
The total matrix stress is isotropic, whereas the fiber stress is axisymmetric:

dof" = déf = déy" = dsf = do{ =srdb,  do" = diéf =dé; =0, j=4,56, (39)
o1

d0| = = (S4 = CmST) dé. (36)
&

The strains are uniform in the composite auregnte, the magnitude of which can be
found from the matrix strains: -

dé, = déif =déi" = hde, j=1273, an
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dé, =dé/ =dé" =0, j=4,5.6, (38)
h=sr/3K,, + m,,. ‘ (39)

Using a different approach, and assuming temperature-independent phase properties,
Dvorak {1986] found equations analogous to the above solution.

Next, we consider the case of isotropic phases. in this case, the strains dé?, eqn (17),
are isotropic and satisfy (31), which permits the laminate to be reassembled from the
individual plies. The required solution is given by egns (16)-(19).

The above solutions result in lamina stresses s4 d8 in the axial direction and sr df in
the transverse plane in the %, coordinate system. The corresponding laminate stresses,
denoted dé’, are iound by transformation of the lamina stresses to the x, coordinates,
and satisfying the overall force equilibrium conditions. The result is

d&]L =5 dé, d&z" =5 ds, d&;L = Srdo, (40)

dét =det =0, dof =s;dé. 41)

51 =54C, + STCZv 52 =S4 Cz + STCI- 3= s(SA =s5r)Ca, (42)
Ci=2ccos?yg, Cy=Xcsintg, G =2 ¢sin2eg, (43)

1= =] 1=]
~

where ¢, is the volume fraction of a ply and ¢, is the angle between the local x,-axis and
the overall x,-axis, Fig. 1. For balanced layups, the in-plane shear stress dgf vanishes.
If both phases are isotropic, there is s, = sy, where sy is given by egn (18) and the stress
field given by (40),(41) is spatially uniform and isotropic. Since the solution in this case
is independent of the fiber volume fraction, ¢, the plies can have different fiber
concentrations.

1Il. THERMOMECHANICAL CORRESPONDENCE

Assuming the matrix to be plastically incompressible, the fields found in the preced-
ing section are unaffected by piastic deformations induced by any loading regime prior
to application of the temperature increment d@ and the auxiliary overall stress da*.
This becomes clear if we view the matrix phase during the decomposition procedure as
an elastic material that has been subjected to eigenstrains caused by prior thermome-
chanical loading histories. Since application of df and the auxiliary fields required to
reassemble the laminate causes isotropic stresses in the matrix [see egn (35)], only elas-
tic strains are produced in the matrix and the current plastic strains are unaitered. The
composite laminate is now left with the overall stress dé* which must be removed. This
loading step, together with the overall in-plane stress increments do, , do;, dog, which
may be applied simuitaneously with the temperature increment, can cause plastic defor-
mation in the matrix. The total fields are then found by superposition of the solutions
of the thermal problem and the mechanical one. The result is equivalent to application
of the mechanical load

de® = ((do, — 5,d0) (do, — s;d8) —syrdd 0 O (dos— s,d8))". (44)
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Let superimposed prime on the stress or strain vectors indicate (3 x 1) arrays listing the
components associated with the x, x,-plane of the laminate, e.g. do’ = [do, do, dag]”.
de’ = [de, de; 2des)”. The overall in-plane strains caused by simultaneous applica-
tion of do” and d8 are then found as

de'=h 1 dé+ M{do — (s + &sr) db], (45)
s=1I[s, 52 )7, 1=0110]". (46)

Matrix M is the instantaneous compliance of the laminate associated with in-plane loads,
and K defines in-plane stresses caused by unit out-of-plane normal stress when the in-
plane strain de’ equals zero. Expressions for M and & are derived in the Appendix. The
first term in (45) is the uniform strain generated by the phase thermal strains in each
ply of the decomposed laminate, eqns (37),(38). The second term is the in-plane strain
caused by application of the equivalent stress de°, eqn (44), to the laminate.

The nonzero phase stresses in the plies are the in-plane stress do; = [do] do; dof]7,
r = f,m, and the out-of-plane component doj. The local stresses are nonuniform in
reality. Let §/(X) and ¢,(X) define phase instantaneous stress concentrations for the in-
plane stress do, caused in the ith ply under overall in-plane stresses and out-of-plane
normal stress, respectively. The first column of § is the stress de, caused by overall
stress do, = | applied to the laminate, the second column corresponds to do; = 1, etc.
Similarly, g is the stress de, caused by do; = 1. Also, let ,';r(i) and ¢! define stress con-
centration factors for out-of-plane normal stress in the phases corresponding to over-
all in-plane stresses and out-of-plane normal stress, respectively. The phase stresses
caused in lamina i by de’ and d@ can be written as

do; (X) = sr&, db + §(X)(do’ — sdb) — ¢.(X)srdb, 47)
doj'(X) = srdb + j. (X)(de’ — sdf) — e.(X)srdb, (48)
E=(5 1 01T, tn=1, &= (Sa/5r = Cm)/cy. (49)

The concentration factors G, ¢, ,”, and ¢ are given in the Appendix. The first term in
(47) and (48) is the uniform stress caused in the phases by the local thermal strains in
the decomposed laminate, eqns (35),(36). As noted previously, this stress is isotropic
in the matrix and does not cause plastic deformation in plastically incompressible ma-
terials. The second term is the stress caused by the in-plane mechanical load (de’ — s df),
and the third term is the stress caused by removing the out-of-plane normal stress sr df.

In this way, any thermomechanical loading path applied to symmetric laminates with
identical plies and variable fiber orientation can be converted in an exact way to a me-
chanical path. The magnitude of the equivalent mechanical load depends on the volume
fraction of the phases, the laminate layup, and the elastic thermomechanical properties
of the phases. The overall strain and local fields caused by the actual thermomechani-
cal loads are found by superposition of the uniform fields caused by the phase thermal
strairs and the auxiliary stress field, and the field caused by the equivalent mechanical
load (44).

The laminate in-plane stress-strain relations can be written in the alternate form

de’ = Mde’ + m’db, (50)
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where m’ is a (3 x 1) thermal strain vector which lists the in-plane coefficients of ther-
mal expansion of the laminate. Comparing eqns (45) and (50), we find

m =hl - M(s + &s7), (51

which defines the overall thermal strain in terms of the mechanical properties. Similarly,
the phase stresses can be written as

do; (%) = g/(X) de’ + g/(X) db, (52)
dof'(%) = j. (X) de’ + e! (%) do, (53)

where g: and e are thermal stress concentration factors. From eqns (47), (48), (52), and
(53), we find

gH(X) = 57§, — (§H(K)S + g/(X)sT), (54)
(%) = 57 = (§1 (X)s + ¢i(R)sr). (55)

Equations (54) and (55) define the thermal stress concentration factors for the matrix
and fiber, r = f, m, in terms of their mechanical counterparts. Alternate expressions for
the thermal concentration factors have been derived by BAHEI-EL-DIN [1990] using the
laminate theory of symmetric plates.

IV. OVERALL YIELD SURFACE
IV.1. General description

Assume the existence of a matrix yield surface which encompasses all stress states that
can be reached from the current state by purely elastic deformation. The onset of yield-
ing begins when the stress point is on the yield surface. Plastic deformation develops
only when the loading point traverses the yield surface. In this case, and assuming that
the load is quasistatic, the yield surface transiates in the stress space to contain the load-
ing point. This is known as kinematic hardening of the yield surface. Translation of the
yield surface may be accompanied by isotropic deformation of the surface which is
caused, in part, by variation of the yield stress with temperature. In the subsequent dis-
cussion, we will assume that the matrix yield surface hardens kinematically, and that
any isotropic change will be caused oniy by variation of the matrix yield stress with tem-
perature. Hence, the current yield surface of the matrix is defined by the function

Sl(om — an),8} =0, (36)

where a,, is the center of the yield surface or back stress. If a,, = 0, eqn (56) represents
the initial yield surface. Considering stress states in which the o3, and o,, stresses van-
isu, we list the in-plane stress components a,, 03, g¢, followed by the out-of-plane stress
0y in the stress vectors, which now represent (4 x 1) arrays. In this case, eqn (56) is
written for elastically isotropic Mises-type matrix material as

f[(.m -ay),l) = i('m - aﬂ)rc(’m - Q) - 73(0) =0, 1))
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where C is a (4 x 4) symmetric matrix with nonzero coefficients ¢); = ¢;; = ¢y = §,
€33 =2, €3 = Cja = C24 = —§, and 7, is the matrix initial yield stress in shear. Under a
multiaxial stress state, the onset of initial yielding in the Mises matrix occurs when the
effective stress given by v3./,, where J, is the second invariant of the deviatoric stress
tensor of the matrix, equals the tension yield stress given by V37,.

Corresponding to the matrix yield surface (56), there exists a yield surface in the &,
lamina stress space. We assume that at a temperature 6, the lamina yield surface is lo-
cated at a,. If in addition the lamina yield stress is a function of temperature, then its
yield surface is defined by the function

g-l[(al_&l)1o] =0. (58)

Similarly, there exists a lamina yield surface g, in the overall stress space with center at
a, such that

g,[(ﬂ-c.),ﬂl =0. (59)

Since the stress states within the yield surface correspond to purely elastic deformation,
the “radii” of the yield surfaces f, Z,, and g; are related (BAHEI-EL-DIN & Dvorax
(1982]; BaHEI-EL-DiN [1990)):

(ai - &l) = wi(' - ai)v

(60)
[om(X) = @an(X)] = B, (X)(3; — &) = G, (X)(0 — a)). (61)

Matrix W, relates the lamina stresses in the X, coordinates to the laminate stresses,
whereas B,, and G}, = B,, W, relate the matrix local stresses to the lamina stresses and
the laminate stresses, respectively. Here, we assume identical plies, in which case B,
does not vary among the plies. Expressions for the elastic “concentration™ factors
W,, B,,, G/, are given in terms of the overall properties in the Appendix. As indicated
in (61), the matrix stress is not uniform in reality. In actual calculations, however, the
stress concentration factor B, is found for a piecewise uniform matrix stress field. For
example, in the Periodic Hexagonal Array model (Dvorak & TepLY [1985]; TEPLY &
Dvorak [1988]), the matrix domain is subdivided into a number of finite elements in
which the stresses are uniform. On the other hand, averaging modeis such as the self-
consistent method (HL [1965]), the Mori-Tanaka method (Mor: & TANAKA [1973)), and
the Vanishing Fiber Diameter model (DvORAK & BAHEI-EL-DIN [1982]) compute an av-
erage stress concentration factor B,, for the matrix phase. In any case, eqn (61) is re-
placed by

(om — am) =BX(& - au) =GR(e —au), i=1n k=1N, (62)

where N is the number of matrix subelements.
Considering the averaging models for which N = 1, the yield functions g; and §,,i =
1, n, can be written from (56) and (58)-(61) as

gl(e—-a),0) =3[W(s~a,) 0] mf[G,(¢—a)b) =0 (63)
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If f is given by (57), then
glle—a)? =i(e—-a)Cla—-a)-136)=0, (64)
¢, =G.CG.,. (65)

Equation (63) or (64) represents n yield surfaces in the laminate stress space ¢. At the
current temperature 6, the centers of the yield surfaces are located at the stress point
given by the vectors a,, i = |, n. The laminate yield surface is then the inner envelope
of the surfaces g,, g>, . . . .. Specific forms of the overall yield functions, g,, are found
next using the bimodal theory.

IV.2. Bimodal yield surfaces

The laminate yield surface defined above is obtained here using a specific material
model. Namely, we find the yield surface (58) of a unidirectional lamina using the bi-
modal plasticit, theory of Dvorak and BaHEI-EL-DIN [1987]. The theory, which was
verified experimentally (DVORAK erf al. [1988]), admits two distinct overall deformation
modes, the matrix-dominated mode (MDM) and fiber-dominated mode (FDM), that
may exist in binary elastic-plastic fibrous composite systems under certain loading con-
ditions. To each mode, there corresponds a segment of the overall yield surface that re-
flects the onset of yielding of the matrix phase in that mode. The inner envelope of these
two segments is the overall surface of the composite lamina. In its application to lami-
nates, the yield surface (58) corresponding to each mode must be separately transformed
to the laminate stress space for each lamina according to (63,). This results in 2n yield
surfaces of the type (59), the inner envelope of which constitutes the laminate yield
surface.

Matrix-dominated mode (MDM): This deformation mechanism is characterized by
plastic shear deformation in the matrix on certain hypothetical slip planes that are par-
allel to the fiber axis, and in certain preferred slip directions on these planes. Apart from
specifying the orientation of the slip planes, the fiber does not participate in this mode.
Hence, the composite is treated as a macroscopically homogeneous medium with known
slip systems, which are, of course, in the matrix constituent. Under the normal stresses
i, 64, and & and the longitudinal shear stress g;, the lamina yield surface g, in this
mode has two branches (DvorRAKk & BAHEI-EL-Dv [1987]; BAHEI-EL-DIN & DvoRak
[1989)):

g mi((3-a) = (3 -a)1+¢-1(0)=0, |g]s]1l, (66
g m(5i-a)-13(0)=0, |gl=1, (67)

where
gi = (56 — &8)/ ((83 = &3) = (3 — &3)). (68)
The first term in (66) and (67) is the resolved shear stress on a specific slip plane and
slip direction which depend on the lamina stresses. Hence, plastic flow occurs in the ma-

trix-dominated mode when the maximum resolved shear stress reaches the initial yield
stress 7,. Since the slip planes are parallel to the fiber longitudinal axis, the axial stress
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a! does not contribute to the resolved shear stress on these planes and, therefore, does
not appear in eqns (66) or (67).

The lamina stresses are given in terms of the overall stress by eqn (60). Substituting
(60) into (66) and (67), and noting the structure of matrix W found in eqns (A-27) and
(A-28) in the Appendix, the lamina yield surface g, described in the overall stress space
is found as

g=i(yl(e-a))(l +g})-136)=0, |qls], (69)
g=(z(0-a))-13(6)=0, |ql=z1, (70)

where
g.=q = (2](e -a))/(y (0 - a)) n
¥l = (W3, Wi, Wiy (Wi = 1)), (72)
2] = (W), Wi, Wi Wig], (73)

where W, is the (4, j)th entry of matrix W.

Fiber-dominated mode (FDM): In this mode the matrix and fiber phases deform to-
gether in the elastic as well as the plastic ranges. In contrast 1o the matrix-dominated
mode, no specific deformation mechanism is suggested. Instead, the fiber-dominated
mode is treated as a general case of plastic deformation of a heterogeneous medium.
The overall yield surface in this case is the envelope of all stress states which can be
reached by pure elastic deformation in the matrix phase. Hence, the FDM yield surfaces
g, of the plies described in the overall stress space are defined by egn (63). An exam-
ple is given in (64) for a Mises matrix. Averaging models such as the seif-consistent
method or the Mori-Tanaka method can be used to determine the stress concentration
factors required in this deformation mode. Our unpublished calculations of FDM yield
surfaces using the Vanishing Fiber Diameter (VFD) model indicate that, contrary to ex-
perimental observations, this model predicts fiber-dominated yielding, which always su-
persedes matrix-dominated yielding. In composite systems where MDM deformation
may be present, as in boron- or silicon-carbide-reinforced metals, the VFD model should
be avoided.

V. THERMAL HARDENING

In contrast to homogeneous materials, uniform temperature changes cause internal
stresses in heterogeneous media when the phases have distinct coefficients of thermal
expansion. The thermal stress field affects the overall mechanical behavior of the ma-
terial and alters the overall yield stress. This effect causes hardening of the overall yield
surface which appears in the stress space as a translation and deformation of the yield
surface. In this section, we consider fibrous composites subjected to pure thermal load-
ing and evaluate hardening of the overall yield surface with the help of the uniform fields
constructed in section lI.

First, consider elastic phases with temperature-independent thermoelastic constants.
In this case, the concentration factors G/, (eqn (61)], which define the local stresses in
the matrix subelements in terms of the overall stress, are not functions of temperature.
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Consequently, the change in the “radius” of the matrix yield surface can be evaluated
by writing (62) in the incremental form

[do ~ daX] = GX(de — day), i=1,n; k=1,N. (74)

Considering the auxiliary stress field found in section II for isotropic matrix and trans-
versely isotropic fiber, we find that the matrix stress is uniform and isotropic, eqn (35).
Since only the deviatoric stress causes plastic deformation in plastically incompressible
materials, then da, = 0. Substituting de:* from (35) and de from (40), (41), into (74),
the increment da,i = 1,n, kK = 1, N is found from (74) as

day = ({s, 52 8 sr]T=sr(Gm17'(1 1 0 1]7)db, (75)

where the stresses s,, j = 1,2,3, are given by (42) and (43). Since the matrix is plastically
incompressible, the matrix vield surface (56) represents an open cylinder with genera-
tors parallel to the hydrostatic stress direction of" = ¢;” = a7 [see e.g. the Mises yield
surface (57)]. In this case, the lamina yield surface g, in (59) is also an open cylinder
with generators parallel to the stress vector given by the second term in (75), which is
the projection of the matrix hydrostatic stress axis in the overall stress space. Therefore,
the second term in (75) does not affect yielding of the composite iaminate, and the yield
surfaces of all matrix subelements in the entire laminate translate together in the over-
all stress space according to the following rule:

da, =sdf, i=1,n, k=1,N, (76)

s=1[s 5 5 sr]’. an

The actual translation of the yield surfaces due to the temperature increment 4@ is found
by superposition of the translation given by (76) and that found during removal of the
overall auxiliary stress s d6. The latter causes hardening of the overall yield surfaces only
if plastic deformations take place in the matrix phase. Description of hardening in lam-
inates caused by plastic deformation of the matrix can be found in BAHEI-EL-DIN and
Dvorak [1982] and BaHEI-EL-DiN [1990).

The hardening rule (76) is general, independent of the form of g;. We recall, how-
ever, that all plies must be identical except for the fiber orientation and lamina thick-
ness. Also, the translation of the yield surfaces specified in (76) is unaffected by previous
loading histories, since the auxiliary stresses used in deriving (76) are unaffected by pre-
vious loading histories as discussed in section II.

Consider now local thermoelastic properties which vary with temperature and apply
a temperature change # from a reference temperature 8,. Noting that the “radius” of
the matrix yield surface at a given temperature 4 is related to the “radius” of the over-
all yield surface by (61) and (62), a similar derivation leads to the following equation
for the center of the yield surface of a matrix subelement:

@ (8) = 3(8)(8 - By). (18)

From (78), the following incremental form replaces (76) when the local properties vary
with temperature:
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day = [s+ %(G—Go)J d6, i=Ln; k=1LN (9

The center of the laminate yield surfaces can be found by integration of (79). Alter-
nately, the center can be found from (78), provided that the average coefficients of ther-
mal expansion of the phases over the temperature range (8 — §,) are used in evaluation
of the stress s, as indicated in section II.

Equations (76) and (79) indicate that the configuration of the initial cluster of the lam-
inae yield surfaces g,, eqn (59), found at a given temperature 8, does not change when
the temperature increment d@ is applied. However, since the laminae yield surfaces are
oriented differently in the overall stress space, the translation given by (76) or (79) may
affect their projections on a specific overall stress plane. This is illustrated next for se-
lected composite laminates.

V1. APPLICATIONS

To illustrate the analysis described above, we present results for two aluminide inter-
metallic matrix composite laminates. For each system, the laminate yield surface at the
processing temperature and at a subsequent temperature during cooling are found.

VI.1. SCS6/Ti; Al-(0 + 45), laminate

The properties of the silicon-carbide fiber and the titanium-aluminide matrix are
shown in Tables | and 2, respectively, as function of temperature (Dvorax [1990a]). The
fiber volume fraction, c,, is 0.35. The composite laminate was cooled down from the
processing temperature 8, = 950°C to room temperature (€ = 21°C). Figures 2 and 3
show the bimodal yield surfaces of the laminae in the overall oy, 0;,-plane and o,, 0,
plane, respectively, at 950°C. Two yield surfaces are plotted for each lamina, a matrix-
dominated mode (MDM) vield surface and a fiber-dominated mode (FDM) yield surface.
In evaluating the FDM yield surface, we used the self-consistent method (SCM) to de-
termine the matrix stress concentration factor B,,. Since the lamina is stress free at
950°C, the centers of all yield surfaces are located at the stress origin. We note here the
flat branches found in the MDM yield surfaces in contrast to the ellipsoidal shapes of
the FDM yield surfaces. We also note that the laminate yield surface represented by the
inner envelope of the six yield surfaces in Figs. 2 and 3 consists of MDM branches only.

Table 1. Material properties of SCS6 fiber

[} E, B8,
(°C) (GPa) » (10~¢/°C)
982 413 0.28 6.30
871 413 0.25 5.50
760 413 0.25 5.30
649 43 0.28 - 4.50
$38 4 0.25 4.40

24 41} 0.25 4.15
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Table 2. Matenial properties of the Tiy Al matnx

9 Em Sm Y=vir
(°C) (GPa) Von (10-¢/°C) (MPa)
950 46 0.3 18.0 200
760 krd 0.3 15.8 237
649 87 0.3 13.6 302
427 91 0.3 12.6 418
260 93 0.3 12.0 505

21 97 0.3 9.6 624

Hence, plastic yielding in the stress planes shown in Figs. 2 and 3 is dominated by the
slip mechanism assumed in the matrix-dominated deformation mode.

Temperature changes from the reference temperature 8, = 950°C cause translation of
the yield surfaces of all laminae as given by eqn (78). Also, since the matrix yieid stress
is a function of temperature, the yield surfaces will experience isotropic deformation.
At a specific temperature 6 # 6,, one or more of the yield branches shown in Figs. 2
and 3 comes in contact with the stress origin, which indicates initial yielding of the com-
posite laminate. In order to evaiuate the yield temperature for the laminate considered
here during cooling from the processing temperature, the matrix effactive stress and max-
imum resolved shear stress in all plies of the laminate were computed as functions of

SCS6/ Ti,Al
ci=0.35
(0/£45),

0 = 950°C

Y = 200 MPa

- 45°

— MDM

e FDM (SCM)

Fig. 2. Bimodal initial yield surfaces of a SCS6/TiyAl, (0/1:45), laminate in the 0, 03;-plane at 950°C.
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SCSs/ Tiy Al

Ci=0.35 O, (MPa)
(0/245)

8 = 950°C 600

S|

Y = 200 Mpa

= MDM
=== FDM (SCm)

Fig. 3. Bimodaj initial yiejq surfaces of a SCSé/Ti,AI. { 0/::45), laminae i the a), 222-plane at 950°C.

-600

mode at room temperature could be of either the MDM. or FDM-type depending o
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700} SCS6/Ti Al ~—— Matrix yield stress
cy=0.35 in simple tension
(0/%45) ———— . .
600 S Matrix effective stress
----- ¥3 x ply maximum

—_ resolved shear stress
w S00r
o
2
g wor
®
7] ~. 0°

0NN

o\:\
45 ~:
200 = .
-‘s--~~:“5° '§:\
100 *-0:— -~‘_‘-.:§~s~~\\;
0 A T L L 1 A :IX | I —_— |
0 200 400 600 800 1000 1200
Temperature (°C)

Fig. 4. Variation of matrix yield stress, matrix effective stress. ply maximum resolved shear stress, with tem-
perature found in a SCS6/TiyAl, (0/£45), laminate.

SCS6/ Ti, Al 1500
ci=0.35

(0/£45), o, (MPa)
8 =21°C

Y = 624 MPa

+45°

— MDM "m:w -45°

== FDM (SCM)

-1500 -+

Fig. $. Bimoda! yield surfaces of 8 SCS6/TiyAl, (0/245), laminate in the o), ,-plane at 21°C after cool-
ing from 930°C.
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SCS6 / Ti3 Al 1300 Xy
¢i=0.35
(0/£45), %22 (MPa) T
8 = 21°C 1000 2 =
Y = 624 MPa

— MDM

-1500 = FOM (SCM)

Fig. 6. Bimodal yield surfaces of a SCS6/TiyAl, (0/£45), laminate in the 0, 05;-plane at 21°C after cool-

ing from 950°C.

SCS6/Ti, Al
ci=0.35
(0/£45),

0 «21°C
Y » 624 MPa

X,
G2 (MPa)
1000 T Y2
0 « 950°C
500 L Y = 200 MPa

pui N

15; |o“f! 5& ‘j’ l@

— MDM
= FDM (SCM)

-500 +

-1000 -

Fig. 7. Bimodal overall yield surfaces of a SCS6/TiyAl, (0/145), laminate in the 0,103 -plane at 950°C and

21°C.
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SCS6/Ti,Al 1500 1 f‘
ci=0.35
G, (M
(0/£45)s 22 (MPa)
1000 + 2 =]
0 =« 21°C - °
Ys 62‘ MPa L 3 - ggg apa
o, (MPa)
-2000 -1500 .1000 500 0 / 1000
-500 +.
11000 +
— MDM
ool == FOM(SCM)

Fig. 8. Bimodal overall yield surfaces of a SCS6/Ti; Al, (0/24S), laminate in the 0,, 0y3-plane at 950°C and

21°C.

V1.2. SCS6/Ni; Al-(0/%45), laminate

The properties of the nickel-aluminide matrix are shown in Table 3 (StoLoFF [1989)).
Fiber volume fraction is 0.35. In contrast to the titanium-aluminide matrix, the mag-
nitude of the yield stress of the Ni;Al matrix increases with increasing temperature up
to 650°C, then decreases rapidly. The processing temperature for this composite is about

Table 3. Material properties of Niy Al matrix

] Em Bm Y=V
(°C) (GPa) wvm (10%/°C) (MPa)
1200 134 032 20.6 137

94 142 032 19.0 279

776 150 0.32 17.2 459

673 154 032 16.4 587

642 155 032 16.1 564

$18 158 032 156 $38

376 165 0.3 14.3 356

327 167 0.32 14.0 279

206 12 0.3 13.4 156

127 178 0.32 13.1 110

20 119 032 12.8 0]
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1200°C. Figure 9 shows the vanation of the matrix effective stress and the maximum
resolved shear stress in all plies with temperature. At about 505°C, the matrix effective
stress in the 0° lamina approximately equals the matrix yield stress in tension. Fig-
ures 10 and 11 show the laminate yield surfaces in the o,,0;,- and g,, 05;-plane, respec-
tively, at the reference temperature 8, = 1200°C, and after cooling to 505°C. Details of
the laminae yieid surfaces have been omitted; only the inner envelope of the yield sur-
faces is shown. It is seen that this cooling path causes initial yielding in the 0° lamina.
At 1200°C, yielding is mainly dominated by the slip mechanism of the matrix-dominated
mode, whereas, at 505°C, the deformation is controlled by the fiber-dominated mode.

VIl. CONCLUSION

Uniform strain fields found in unidirectional fibrous composites have been used to
construct spatially uniform and isotropic strain fields in composite laminates under phase
thermal strains. The solution was found for identical plies with variable fiber orienta-
tion, isotropic matrix, and transversely isotropic fiber. in this case, the matrix stress is
isotropic, the fiber stress is axisymmetric, and the laminate stress which supports the lo-
cal fieids consists of in-plane normal and shear stresses and out-of-plane normal stress.
For balanced layups, the overall in-plane shear stress vanishes. If both the fiber and ma-
trix are isotropic, the solution leads to spatially uniform stress and strain fields which
are also isotropic. In this case, the solution is not a function of the fiber volume frac-
tion which can vary among the plies.

700 ~ . - Matrix yield stress
SCSE/NiAl in simple tension
cy=0.35

coob (0/245)¢ — - = Matrix effective stress

ceeee 43 x ply maximum
resolved shear stress

Stress (MPa)

200 =

- ~
0° ~~.~‘ .
“s:\‘
0 T | P | TN S a1 FE
9 200 400 800 800 1000 1200 1400
Temperature (°C)

Fig. 9. Vaniation of matrix yield stress, matrix effective stress, ply maximum resolved shear stress, with tem-
perature found in a SCS6/Ni, Al, (0/24$), laminate.
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SCS6/ Nl3 Al Gy (Mpa) X,
c1=0.35 00 t
(0/£45),
Xz ey
0 « 505°C 8 = 1200°C
Y « 470 MPa 200 Y = 137 MPa
o,, (MPa)
800 -zo'o\ 0 w ng 00
-200
— MDM
= FDM (SCM) 400

Fig. 10. Bimodal overall yield surfaces of a SCS6/Niy Al, (0/t45), laminate in the 0,, 05,-plane at 1200°C
and $05°C.

SCS6/ Niy Al G2 (MPa)
ci=0.35 600 T
(0/£45)s
, X2 =
m -
0 » 1200°C
8 = 505°C Y = 137 MPa
Y « 470 MPa 2004
o, (MPa)
200 00
— MDM
- FDM (SCM)
'm 4L

Fig. 11. Bimodal overall yield surfaces of a SCS6/NiyAl, (0/£45), laminate in the 0, 033-plane at 1200°C
and 305°C.
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A useful result of the fields found here is the existence of a correspondence between
thermal and mechanical loads applied to composite laminates. This permits replacement
of any thermomechanical loading path by an equivalent mechanical path in composite
systems with a plastically incompressible matrix. In this case, the system remains elas-
tic under deformation caused by the phase thermal strains which produce an isotropic
stress field in the matrix. Laminate analysis methods, derived mainly for mechanical
loads, can be applied to thermomechanical loading problems by simply modifying the
loading path.

The effect of a temperature change on yielding of a fibrous composite laminate was
evaluated with the help of the uniform fields. This thermai effect was found to be a uni-
versal rigid body translation applied to the yield surface in the overall stress space. The
magnitude and direction of hardening depend on thermoelastic properties and volume
fractions of the phases, and the laminate iayup. When both the fiber and matrix phase
are isotropic, the translation is independent of the fiber volume fraction. The transla-
tion vector is applied to all yield branches associated with the individual plies regard-
less of the fiber orientation. Consequently, the configuration of the initial cluster of the
yield surfaces of the laminae that defines the overall yield surface is unaffected by tem-
perature variations. The projection of the yieid surface on the plane stress subspace,
however, will be very different from the initial configuration, since the lamina yield sur-
faces are oriented differently in the overall stress space. In addition, isotropic harden-
ing may be present if the matrix yield stress is a function of temperature.

Examples of thermal hardening caused by cool-down of :ntermetallic matrix compos-
ites showed significant changes in the geometry of the yield surface and the deforma-
tion modes available in the plane stress space.
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APPENDIX

Here we derive expressions for the overall compliance M, the stress vector &, and the
mechanical stress concentration factors 9’,,,:.3'}'.:‘, of the phases which appeared in
section III, and the distribution factors W; of the plies which appeared in section 1V.
Considering the in-plane stresses de’ and the out-of-plane normal stress do,, the stress-
strain relations of lamina /, i = 1, n, can be written in the laminate x; coordinates as

de; = M, de; + m, doi, (A1)
d'," = 8,- d(,’ + ‘,‘ dﬂ;, (A‘Z)

where M; and £, are overall instantaneous coinpliance and stiffness matrices for in-
plane mechanical loading, m, is the in-plane strain caused by unit out-of-plane normal
stress, and &, is the lamina in-plane stress caused by unit out-of-plane normal stress
when the iamina in-plane strains vanish. From (A-1) and (A-2), we find

8, = ‘;—I, ‘1 = "slﬂ,‘. (A-3)
The lamina stress and strain vectors transform to the x; axes (BAHEI-EL-Dy [1990))
di,' = G, d‘;. d&i = dd;. (A-‘)

dé; = Q,de,, dé = def, (A-5)
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where
cos? o, sin®p,  sin2e,
®R, =| siny, costy, =-sin2e |, Q=R (A-6)
~isin2¢, isin2p, ¢O0s2¢,
This suggests the following transformations for the lamina properties:
M=RTMR, m =R M, (A-T)
£ =Q/£qQ, 4 =0Q7t (A-8)

where M, £, m, and £ are lamina properties referred to the local coordinates %,. Since
the plies are identical, the lamina properties in the X; coordinates are also identical
among all plies.

The overall properties of a lamina in the %, coordinate system can be found from a
material model which specifies phase stresses in terms of the overall stresses in the form

deo!(X) = B, (X) da; + 8,(X) d5}, (A-9)
doj (%) = cI(X) d&; + 1.(X) dd}, (A-10)

where @, 6, ¢”, and n are phase stress concentration factors. The stress concentration
factors, or their averages, can be evaluated using available micromechanical material
models such as the Periodic Hexagonal Array model (Dvorak & TepLY [1985]; TEPLY
& DVORAK [1988)), the self-consistent model (HILL {1965]), and the Mori-Tanaka model
(Mor! & TaNaka [1973]). Foliowing the derivation given by Hnr [1963]) which approx-
imates the local fields by certain phase uniform fields, the overall compliance s and
# of a lamina are found in the notation used here as

M =M+ Cnl(My — M))B,, + (M — mp)cl], (A-11)
m= ﬂ/ + Cm[(Jm - */)‘m + (mm - ﬂ/)ﬂm]. (A'lz)

where M,, m,, r = f, m, are phase in-plane compliance associated with loading in the
X, %;-plane, and with the out-of-plane normal stress, respectively.

The in-plane lamina stresses are related to the overall stresses applied to the laminate
by

de, = 3C,de’ + &,do,, do! = do,, (A-13)

where X, and &, are stress distribution factors. Since the plies deform together in the
x; xy-plane, then

de’ =de;. (A-149)

In analogy with (A-1) and (A-2), the laminate stress-strain relations can be written as
de’ = Mde’ + mday, (A-195)

de’' = £de’ + Kdo,, (A-16)
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where the overall compliance M, m and stiffness £, & are yet to be determined. From
(A-1) and (A-13)-(A-15), we obtain

X.=LM &=Lim-—m,). (A-17)

From force equilibrium in the x, x,-plane, the distribution factors must satisfy

2ok, =1, :V_‘,c,tf =0, (A-18)

=] 1=
where I is a (3 x 3) identity matrix and 0 is a (3 x 1) null vector. The overall compli-

ance and stiffness matrices can now be found by substituting (A-17) into (A-18):

L= ic,s,-. £ = ici‘h (A-19)

1m] 1=
M=L, m = -ME. (A-20)

From (A-4), (A-9), (A-10), and (A-13), the phase stresses can be expressed in terms
of the laminate applied stresses as

de} (X) = §i(X) de’ + ¢,(X) do;, (A-21)
dof'(%) = j. (%) de’ + ¢i(X) dos, (A-22)
GHX) = B, (DR, X, giX) = B, (R4 +§.(%), (A-23)
PR = (R, eF) =l (RIRK, + 1,(K). (A-24)

Finally, if ., denote matrix stress, &' and ¢' denote lamina stresses in X, and x; co-
ordinate systems, respectively, and ¢ denote laminate overall stress, such that each vec-
tor is (4 x 1) listing the in-plane stresses gy, 03, 0, followed by the out-of-plane stress
03, then we can write

o, =R_&, @ =Rse', ¢ =He (A-25)
o, =Ge, @ =We, (A-26)
G,- = BMR,'Hn wl = Rillio (A-27)
where
C,.. ‘.. x; ‘1] [dl, 0]
B, = . H = , R/ = . A-28
[cL m.] lor 1] TTlem (A-28)

As discussed above, the stress concentration factors @,,, 8., ¢L,, and 1,, are evaluated
using appropriate micromechanical models. The transformation factors ®;, and the
stress distribution factors X,, and &, are given by eqns (A-6) and (A-17), respectively.




International Union of Theoretical
and Applied Mechanics

George J. Dvorak (Ed.)

Inelastic Deformation
of Composite Materials

IUTAM Symposium, Troy, New York
May 29-June 1, 1990

With 101 Hlustrations

Springer-Verlag
New York Berlin Heidelberg London
Paris Tokyo Hong Kong Barcelona




On a Correspondence Between Mechanical
and Thermal Fields in Composites with
Slipping Interfaces

Y. Benveniste and G. J. Dvorak

Department of Solid Mechanics, Material and Structures
Faculty of Engineering, Tel-Aviv University
Ramat Aviv, 69978

Israel
Department of Civil Enﬂx:eering
Rensselaer Polytechnic Institute
Troy, New York 12180—3590
USA
Abstract

The present paper is concerned with composites in
which the constituent interfaces are weak in shear and
therefore exhibit shear deformation associated with sliding.
Thermomechanical loadings of such systems are considered
which consist of homogeneous traction or displacement
boundary conditions and a uniform temperature change on the
outside surface of the composite. For binary sysiems with
isotropic constituents, it is shown that the actual fields in the
purely thermal problem can be uniquely determined from the
solution of the purely mechanical problem. This
correspondence relation is used to determine the effective
thermal strain and stress tensors on the basis of the effective
mechanical properties.  For multi~phase systems with
anisotropic constituents undergoi interface slip and
separation, the theorem of virtual work is used to establish a
similar relation between the effective thermal tensors and the
recnanical concentration factors and constituent properties of
the composite.
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Introduction

Thermal problems in heterogeneous media have drawn
much interest in the last years due  to the increasin
importance of high temperature composites. Sever
fundamental aspects in the micromechanics of composites in
the context of thermomechanical problems have recently been
investigated by the authors, Dvorak (1986), Dvorak and Chen
21989), Benveniste and Dvorak (1989) where the reader can

nd a list of references in the field.

Most of the work dealing with composites assumes
perfect bonding between the constituents. However, due to
poor bonding between the phases, a jump in the displacement
field may occur at internal bound._ies, and it is of interest to
study thermomechanical problems in composites under such
circumstances. Determination of the effective properties
requires special attention in the presence of imperfect bonding,
and a proper framework for the investigation of such problems
has been laid down by Benveniste (1985). Interfaces which are
weak in shear may be modeled by demanding that the normal
displacements are continuous, but the tangential displacements
exhibit a jump which is proportional to the shear tractions.
For limiting values of the constant of proportionality, the
special cases of perfect bonding and lubricated contact are
obtained. Such models of a flexible interface which may also
include imperfect bonding in the normal direction have been
previously used in the literature, see for example Lené and
Leguillon (1982), Benveniste and Aboudi (1584), Aboudi

1987), Benveniste and Miloh (1986), Jasiuk and Tong (1989),
chenbach and Zhu (1989}, and Hashin 9990). The reader 18
referred to these works for a further list of references on
imperfect interfaces. Recently, several problems of inclusions
which undergo pure slip at interfaces have been considered by
?dura.)et al. (1985), Tsuchida et al. (1986), and Jasiuk et al.
1988).

The present paper is concerned with binary systems
with flexible interfaces in shear, and isotropic constituents. It
starts by establishing a correspondence relation between local
fields induced in such two—phase composites by purely
mechanical and purely thermal problems. These relations are
obtained by using a decomposition scheme originally proposed
by Dvorak (1983, 1986), and further employed by Benveniste
and Dvorak (1989) in binary composites with anisotropic
constituents, arbitrary phase geometry, but perfect bonding
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between the phases. Recently, Dvorak (1990) has thoroughly
explored the implications of this concept in regard to the
exstence of uniform fields in heterogeneous media. We show
here that this decomposition scheme can be generalized to the
case of two—phase media undergoing slip at interphase
boundaries, but with isotropic constituents. The
implementation of the scheme shows that local fields in such
compnsites which are induced by a uniform temperature
change at external boundaries can be uniquely determined from
the solution of the same system subjected to uniform overall
mechanical loading. In the second part of the first section of
the paper, the established correspondence principle is used to
derive the effective thermal strain and stress temsors on the
basis of the effective mechanical properties of the composite.
The second section of the paper is concerned with multiphase
composites with anisotropic constituents undergoing slip of the
above described nature at interphase boundaries.  Only
effective properties are conmsidered in this section, and a
generalization of Levin’s (1967) and Rosen and Hashin’s (1970)
result is derived using the theorem of virtual work. The
obtained results reduce correctly to those obtained in the
previous section for the case of binary composites with
1sotropic constituents.

L. Correspondence Between Purely Mechanical and Purely
Thermal Problems in Binary Composites with Interfaces
Weak in Shear

la. General Theory

Consider a two—phase composite with isotropic
constituents, but arbitrary phase geometry. Let the
thermoelastic constitutive relations of the homogeneous phases
r = 1,2 be given by:

o,=L e+ (0 , r=1,2

(1)

&=Moa+md ’

where o, ¢, and 0 denote respectively the stress, strain tensors

and temperature field, L, and M, = y;lare the phase stiffness
and compliance tensors, m, is the thermal strain temsor (of




expansion coefficients), and ¢, is the thermal stress tensor such
that {, = -L, m,. In this paper we will denote the matrix
phase by the index r =1 and the inclusion phase by index
r=2

The two—phase composite is assumed to have
constituents interfaces which are weak in shear and are
modeled by a jump in the tangential displacement which is
prescribed as proportional to the shear traction there. Perfect
bonding in the normal direction is assumed in this part of the
work; however, in the second part open cracks at interfaces are
allowed. Let p denote the unit normal vector at S,; pointing

from phase r = 2 to phase r = 1, and let u and t denote

respectively the displacement and traction vectors. The
interface conditions at S;; may be expressed in the following

manner. Let (p, g, s) be an orthogonal set of unit vectors at
Sy; where p denotes the unit normal vector. The components

of the traction and displacements vectors in this coordinate
system are respectively expressed as t = t, + t, + t,, u=1ug

+ u, + u,. The interface is then modeled by the following set
of equations:

[‘b}su =" , [E]sxz ="

(2)
h.‘qlsﬂz Rt b =Q¢

where R and Q are constants of proportionality for the
interface which is flexible in shear and a square bracket [ ] on
a quantity ¥ denotes the jump in that quantity across S,,, that

18
=47, -0

It is noted that for R — 0, Q — 0, perfect bondiniin shear is
obtained, and that R — 00, Q — o0 yield the case of
lubricated contact. The analysis which follows in this section

, (3)
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is also valid if at part of the interfaces there exists imperfect
bonding (R # 0, Q # 0%, and at other parts perfect bondin
prevails = 0, Q = 0); in fact different values of R and
may exist at different points in the interface.

Consider now purely mechanical problems in which the
outside surface of the composite is subjected to homogeneous
displacement or traction boundary conditions described by:

u(S)=¢x #S)=0 ,

t(S)=om &S)=0 , “

where u (S) and t(S) denote the displacement and traction
vector at S, n is the outside normal to S, ¢, and g, are
constant strain and stress temsors, and finally x denotes the

components of a Cartesian system.

Let the local strain and stress fields induced in the
phases by these boundary conditions be denoted by

&(x) = Alx)ey o(x) = L, Alx)eg ()

0:(x) = B:(x)ay , &(x) = M, B(x)oy, (6)

with (5) and (6) corresponding to (4), and (4), ;espectively.

Furthermore, let us denote the jump in the displacement
vector at S,, by

[‘3 (’.‘)] =D (x) & ’

Sia
[9 (1_:)]%= F(x) g » )
again, under (4), and (4), respectively. Of course, the fields

gs), (6), and (7) satisfy the interface conditions in 82). Local
elds are denoted in this paper by the argument (x), whereas

expressions without such an argument will refer to average
quantities.




Next, consider thermal loading problems in which the
surface of the composite is subjected to a uniform temperature
rise and to zero displacement or traction boundary conditions.

«s) = 6, us)=0 S ®
As) = o, () =0 . (9)

'g‘he local fields under (8) and (9) will respectively be denoted
y:

& (E) =3 (§)9° )
o,(x) = (La,(x) + £)6, (10)

1] =d@a
S13
oX=b @0
St (f) = (L_{. t,’r (f) + lPr)ao ’ (11)

[‘3 (5)]8 = {(x)4, )

12

where the vectors d(x) and f(x) satisfy the interface conditions

in (2). We also note that a uniform temperature field will
prevail in the composite under (8) and (9).

It will be shown now that in the two—phase composite
with isotropic constituents characterized by the constitutive
relations (1) and the interface conditions (2), knowledge of the
tensors A (x), D(x) uniquely determines a,(x), d(x), and

B(x), F(x) determize b (x), f(x).

Let us first establish the correspondence between the
fields induced by (4), and (8). This is achieved by using the

decomposition scheme described by Dvorak (1986), and
Benveniste and Dvorak (1989) for the case of perfectly bonded
composites. We will see here that this procedure can be used
to establish the desired correspondence relations in the case of
interface conditions (2) for two—phase composites with
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isotropic phases. In the first stage of this decomposition
scheme we seek a strain field ¢ which is uniform in V under a
uniform temperature change 6,. This can be achieved by

demanding that 5 and 0, result in a uniform stress field:

Lye+ L b=Ly e+ 46, , (12)

T

so that the tractions at S,, are continuous. Equation (12)

yields for ¢:

e=(L-L) " (L- )b (13)

At this stage of the procedure, uniform strain and stress fields
prevail in the composite, and both the displacements and
tractions are continuous at S,,. Also, it turns out that for the

isotropic constituents, the created uniform stresses are
hydrostatic, and shear tractions at S,, vanish. Therefore, the

interface conditions at S,, described in (2) are automatically

satisfied. At the outside boundary S, displacements arisi
from (13) have been now induced and, as demanded by (8
they need to be reduced to zero. To accomplish this, we apply
the following displacements on S:

u(S)=-ex , (14)
and obtain

& (x) = —Ax)e

1 @5, = D)z - (13)

By superposition with the uniform fields, the resulting
fields at the end of the decomposition scheme are therefore:
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€@ =(1-A @L,-L) (L-4)8 ,  (16)

o] =P -1 G-t - an

12

with I being the fourth order identity temsor.  The
concentration factors a,(x) and d(x) can be therefore read out
as: '

a(x) = (1 - Ax) (L, - L) " (4= 1) (18)

d(x) == D(x) (L, - L))" (La-¢)) - (19)

The difficulty of extending the above procedure to
anisotropic constituents becomes now apparenmt. For such
constituents, shear tractions at S,, would exist after the

reassembly of the aggregate. To remove these shear tractions,
one would have to solve a boun value problem in which
the S,, interfaces are loaded by the negative of the shear

tractions induced therein. Even though the solution of such a
boundary value problem can be formulated in principle, it is
not clear at this time that such a solution can be related to a
purely mechanical problem with prescribed overall strain.

The correspondence between the fields resulting from
(4), and (9) can be similarly established. In the first step, a
uniform stress field ¢ is sought which together with a
temperature change 6, causes a in uniform strain field, and
therefore continuous displacements throughout. The condition
is

Mig+mb=Mo+mb ; (20)
it yields

o=(M,- Mz).l (m;-mpb, - (21)
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Since some the constituents are isotropic, these stresses do not
result in shear tractions or displacement jumps at S,,. To

comply with (9), we now remove the tractions induced on the
outside surface by (21), by application of:

t(S)=-gn , (22)
which by themselves cause the local effects

o,(x) = -By(x)7 ,
. (23)
[u(x)lg,, = -Flx)g -

This is superimposed with the uniform field o to yield:

0:(x) = (1 - B,(x)) (M, — M) (m, —-m) 6 , (24)
)] =F) M- @ m) 6, (25)
12

The concentration factors thus are
-1
b,(x) = (I -B/(x)) (M;-M,) (m;—m,) (26)

£(x) = —F(x) (M, - M) "(m, - m)). (27)

We have therefore established the desired
correspondence relations. It is of interest to note here that the
structure of (18) and (26), is similar to that given in
Benveniste and Dvorak (19895 for perfect bonding between the
constituents.
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1b. Application: Effective Thermal Stress and Strain
Tensors

One of the applications of the correspondence principle
described in the previous section is the determination of the
effective thermal tensors of the composite based solely on the
information obtained from the mechanical problem. Suppose
therefore that the effective constitutive law of the composite is
described b

ten 1 QY
H
12 <

e+L6
c+md (28)
where L and M with M = g-l denote respectively the effective
stiffness and compliance tensors, { and m with £ = —L m are
the effective thermal strain and stress tensors. The tensors ¢
and ¢, and the temperature 4 refer to average quantities.

The tensors { and m are determined in principle by

subjecting the composite to boundary conditions (8) and (9)
respectively. Let us first consider the determination of £. It is

important to note here that since displacement jumps occur at
constituent interfaces, special care should be taken in definin
average quantities in the composite, and the reader is referr
to Benveniste [1‘1985) for a proper framework for the
computation of etfective properties in these situations. Under
(8), the average strain in the composite vanishes, therefore in
accordance with the quoted paper

E=C 6+ Ce-c =0 (29)

where J is 3 second order tensor representing the deformation
at internal boundaries, and is given by:

Jij = l—f ([lld Pj + [uj] pi) ds;z ’ (30)
2v 51
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where p; was defined in (2); ¢, and ¢, with r = 1, 2 denote the

phase volume fractions and phase strain averages respectively,
and V is the volume of the composite. The average stress in
the composite, in view of (1),, (28),, and (29) is given by

g=0C0,+C03 =
=c,(Lie,+£,0)) + co(Lyes+L,0,) = L6, (31)

where we have used the fact that a uniform temperature
prevails throughout.  Elimination of €, from (29) and

substitution into (31) provides:

t=cli+cly+cy(Ly—-L)a,+¢,L,a (32)

where the concentration factors are defined as in (10):

©@=30 , I=af . (33)

The tensor a, is simply the average of a,(x) in (18), and is
given by

3, = (1-A)(L,-L) (4-8) (34)

where A, is again the phase volume average of A, (x). The
tensor a is obtained by substituting (10), and (19) into (30):

a=-A(L,-1)" (4-8) (35)

with the concentration factor .] = é go defined as:

A = ;_V f (Dyy; (x) Py + Djyy (x) py) dS,; - (36)
s 13
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Substitution of (34) and (35) into (32) provides
L=cli+cly+
+ oLy = L)L - ALy = Ly) (44— £)
—6L AL -L) (G-t (37)
hence £ has been determined in terms of the constituent phase

properties and the mechanical concentration factors A, and A.

Equation (37) can be further simplified. To this end
recall that the effective stiffness L of the composite is obtained

by subjecting the external surface S to (4), and using the fact
that

=Cc€ +Creg—CJ =€ . (38)

After some manipulations this leads to (Benveniste (1985)):
L=Li+c¢;(L;—L) A +cLA . (39)

Solving for A, ir (39), and substituting into (37), weobtain:

£= 4+ L-L)L-L) (4-8) (40)

Equation §0), interestingly enough, is the same as equation
(3.11) in Benveniste and Dvorak (1989). Note however that
imperfect bonding at S,, as described in equation (2) still

affects the effective thermal tensor t since L itself is affected,

as in (39
{e determination of m follows similar steps, this time

under the stress boundary conditions (9). It leads to a set of

equations which are counterparts to (29), (31) and (32):

g =clgl+C3g2=o ’ (41)
€ =€+ Cieq—Cd = ¢ (Mo, + mGy) +
+ ¢3(M;0; + my6y) =mb, (42)
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m = ¢m, + C;m, + C;(My; — Mby—cb (43)

where we have defined the concentration factors b, and 13 as
follows:

In analogy to (34) and (35), these tensors can be written in the
form:

b= (I-B,) (M;~M,)" (m,-m,) , (45)
b=-B(M,~-My)" (m,-m) , (46)
with
1
Bijn = —f (Fi(x)p; + Fyyy(x)p;) dSy; - (47)
2V S "

The equation for m, finally becomes:

I.I'l = cl@l + C,IP, +
+ ¢(My = M,)(I - B,)(M, - M,) (m, - m,)
+¢,B(M, - M) (m;-m,) . (48)

;I‘he e)x)ptession for the effective compliance tensor (Benveniste
1985)),
M=M, +c,(M;-M)B,—-¢c,B , (49)

helps to reduce equation (48) to the form
m=m+ (M-M) (M, -M) " (my-m) ,  (50)

which is the counterpart of (40). Using {, =— L, m, and the
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fact that L = M , one can verify that ¢ and m as given by (40)
and (50) fulfill the relation { = ~Lm.

We have utilized here the correspondence  relations
established in the previous section to derive expressions for the
effective thermal tensors ¢ and m in terms of effective

mechanical properties of the composite. The correspondence
relations are limited to isotropic constituents, and therefore,
t!txj derived equations (40) and (50) apply also to such systems
only.

Expressions for the effective thermal tensors in terms of
effective mechanical properties have been given before in the
literature for the case of composites with perfectly bonded
anisotropic phases. The basic idea was due to Levin (1967)
which used the principle of virtual work to this end. Levin’s
paper was extended to anisotropic constituents by Rosen and
Hashin (1970), see also Laws (1973) and Schulgasse‘vr.Iﬁ1989) for
an alternative derivation of these rei.:ions. We will show in
the next section that the virtual work theorem can again lead
to equations similar to (40) and (50) for the case of multiphase
materials with anisotropic phases and imperfect interfaces of
the type described in (2). It should be of course made clear
that in spite of its limitation to isotropic constituents in the
present case, the decomposition scheme is in a semse more
general than the results provided by the virtual work theorem
since it provides results on fields and not only on average
properties.

2. Effective Thermal and Stress Tensors in Multiphase
Composites with Anisotropic Constituents and Interfaces
Weak In Shear

We consider now multiphase composites described by
(1) and (2), but allow this time for general anisotropic
behavior in for the phases. As in Section 1, different parts of
the interfaces may possess different values of 0 < R < 00 and 0
< Q < o0. An expression for the effective thermal stress
tensor { in terms of purely mechanical properties will be first

derived by considering the boundary conditions (4), and (8).
For convenience, we let the fields induced by (4), be denoted
by primed quantities and those resulting from (8) by unprimed




quantities. The principle of virtual work for composites with
imperfect interfaces can be found in Benveniste (1985). When
applied to the boundary value problems (4), and (8{, it can

be written as:

f 0;5(x)¢;(x)dV
v

.|
= [uvioes + ¥ f w@mios, . oy

S r:zs".

where t; and u; denote the traction and displacement vector,
r = 1 stands for the matrix, and S, denotes the boundaries of

the inclusion phases with the matrix.
Substitution of o;; from (1) into (51) yields:

f Liju aa(x) €;(x) dV + f & €5(x) 8,4V
v v

, \
= [eemimas + Y [ @i, (62
S r=28,

with the material properties assuming the indexr=1,2, ... N
depending on the position of the point x in the composite. For

the boundary condition (4), the first integral on the right
hand side of (52) can be simplified as:

f ty(x)u;(x)ds =f ti(f)‘gjxjds

S ]

0
= €4 f oy (X)nyx;dS
]




0 0
= Eij aij V= fij tlJ 0°V , (53)

where, o;; denotes the overall average stress, and the fact that

the average strain vanishes under (8) has been used.
Substitution of (53) into (52) gives: '

f Lijn & (x)eg; (x)AV + f & €(x)6, AV
v v

) §
=Y [ oi@is, + a6V . (50

re2 Sy

The virtual work theorem is now applied to the
boundary value problems (4), and (8) with the alternative

choice of admissible displacement and stress fields; the fields in
(4), are denoted by primed quantities and those in (8) by

unprimed ones. The result is:

J o) eyav

v

N
- [imuees + ¥ [ C@i@ies,, (5

) r.zS"

f Liju exi(x) ¢ (x)dV
v

¥
= 2f t;(g)[u‘(§)]d8u. . (56)

reaSy;

where we used the condition u(S) = 0. Subtraction of (56)
from (54) yields




7o

N
= é Z ;{ [ti().c)[u;()_t)] - tli(’_‘)[“i(f)]] ds,

0
i €ij o - (57)

The integral on the right hand side involves the scalar product
between the traction vector in one loading system and the
displacement jump vector in the second system. The interface
conditions described in (2) make this term vanish. Equation
(57) therefore yields:

N T
(=1 Al (58)
< Tiep TeTS

where we have invoked the definition of the concentration
factors A, and reverted again to the bold face tensorial

notatioa. The transpose sign in (58) denotes:

(ADji = (Aduy - (59)

It is somewhat surprising to see that equation (52 is
the same as Rosen and Hashin’s (1970) result for perfect
bonding between the phases. Note however that due to

interface slip, the tensors }.\'f are not equal to those which

would be obtained under perfect bonding conditions. We
finally mention that if part of the interfaces at S,, contain open

cracks,(58) remains valid since the tractions at these
boundaries vanish identically if all crack closure effects are
neglected.

For the case of binary comfponites equation (58) can also
be written in other equivalent forms with one among them
making contact with the results obtained in the previous
section. Under (4),, note that
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CA+CAy—cA=1 , (60)

where A was defined in (36). Solving for c,A] in (60) ang
substituting in (58) provides:

L=l +c, AT (L-) +c, ATY, (61)

Another form can be obtained by writing first (39) as:
L=L,+cAj(L=L)+c, AL, , (62)

where the diagonal symmetry of the stiffness tensors has been
invoked. Solving for A} in (62) and substituting into (61)
provides:

E= 4+ (L-L)L~L) (L-t) +
+c, AT {fx‘{‘x@z"!:n).l(fz'fx)] - (63)

Equation (63) is the counterpart of (40) of the previous section

for the case of anisotropic constituents. Let us next prove that

in the special of isotropic phases the last term in (63) vanishes.
For isotropic phases let,

(L)y=ady ,
2
(I.‘l)ijl'l = ﬂ aij 6" + v (6k 6j5 + 6“ 6jl‘ -; dij 6,.') ’
-1
q‘:_!:,‘l)rm = £bigbun + ((Ornlsn + Ornlsn —%6“5"“) ,

(L an= A bpn (64)

where a, §, 7, £, ¢, A are constants. Writing A” in indicial
notation and carrying out the summation in (63) according to




b4

(64) shows that the temsor QT enters only as (AT)pqii.
However, since according to the interface conditions (2) the
normal displacements are continuous at S, it follows from (36)
that Ajig = 0 or, in fact, (éT)pqiiz 0. We have therefore
sho;vn that for the case of isotropic constituents (63) reduce to
40).

( A similar implementation of the virtual work theorem
(51) to the boundary value problems (4), and (9) yields
equations for the thermal strain tensor m. For the sake of

brevity we will give only the final results, counterparts to
equations (58), (61) and (63). These are:

m=4a G ?3‘9: (65)

T

Il eam

m=m,+c, B3(m,~m) (66)

m=m, + (M-M)M,- M) (m,-m,) +
+ ¢, B'(M, -M)) "(m;~m,) (67)

where the last two equations refer to binary systems only. It is
noted that the structure of (66) and (67) are not exactly
similar to (61) and (63) respectively. This is due to the fact
that ¢ and o in (29) and (31) and also (39) and (49) have a

different structure. For the same reasons mentioned above
equation (67) reduces to (50) for the case of isotropic
constituents.

Finally, it is easy to show that { and m, as given by

(58) and (65) for example, satisfy { = —Lm. From the

definitions of the A, and B, tensors and also due to L = 1!{'1, it
results that

B,=L AL r=1...N (68)




which provides

LBl =A7L, r=1... N o (69)

Multiplying (65) by (~L) from the left, using (69) and {, =
—Lm, shows readily that (58) is in fact recovered.
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Abstract—General connections are established between the mechanical and therma! responses of
composite matenals with debonded or imperfectly bonded interfaces, and with internal cracks or
cavities. In particular, such results are found for multiphase composites or polycrystals in which
normal and,/or shear displacement jumps may exist at interfaces or cracks, consistent with complete
debonding or with the presence of a nonlinearly elastic interphase layer. In two-phase systems with
isotropic phases and sliding interfaces, we also recover exact connections between the mechanical
and thermal stress or strain fields in the phases.

~

1. INTRODUCTION

Evaluation of thermoelastic properties of composite materials is of considerable interest,
particularly in high-temperature ceramic systems. Although perfect bonding between the
phases may be desirable, various types of imperfect bonding at interfaces, as well as internal
cracking may exist in actual systems. Any such damage mode will cause a change in overall
stiffness, in local mechanical fields, and also in the overall thermal expansion coefficients
and in the thermal stress and strain fields. It is well known that in perfectly bonded systems,
the overall thermal properties can be evaluated in terms of phase properties and mechanical
concentration factors (Levin, 1967). More general relations involving local fields also exist
for certain perfectly bonded two-phase systems (Dvorak, 1983, 1986, 1990 ; Dvorak and
Chen, 1989; Benveniste and Dvorak, 1990a), and also for two-phase composites with
isotropic constituents and slipping interfaces (Benvenistc and Dvorak, 1990b).

The present paper extends this line of inquiry, and establishes such connections for
many other damaged composite materials. In particular, we show in the first part of the
paper that the Levin-type connections are recovered in multiphase composite systems of
arbitraty phase geometry and material symmetry, even if the interfaces, or their parts,
undergo debonding which is either complete, or consistent with the presence of a very thin
nonlinearly elastic interphase layer which permits both normal and shear displacement
jumps at interfaces. In the second part, special forms of these results are found for two-
phase composites. Moreover, in two-phase systems with isotropic constituents and slipping
interfaces, exact relationships are found between mechanical and thermal stress or strain
fields in the phases. This is accomplished with the help of uniform strain and stress fields
in heterogeneous media (Dvorak, 1990 ; Benveniste and Dvorak, 1990a).

The emphasis is on evaluation of general thermomechanical connections rather than
the formulation of micromechanical models. Examples of the latter may be found in other
recent references, e¢.g. Chen and Argon (1979a,b) ; Lené and Leguillon (1982) ; Benveniste
and Aboudi (1984) ; Mura et al. (1985); Benveniste and Miloh (1986); Tsuchida et al.
(1986) ; Jasiuk er al. (1988); Achenbach and Zhu (1989); Jasiuk and Tong (1989);
Hashin (1990). Therefore, throughout the paper we assume that the local fields caused by

+ Also Visiting Professor at RPL.
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" mechanical loads can be evaluated by an independent analysis. Our purpose is to provide
a general methodology for evaluation of the thermal response of damaged composites from
the various solutions of mechanical loading problems.

2. MULTIPHASE COMPOSITES

2.1. Phase and interface properties

We first consider multiphase media with N constituent phases, which may represent
such actual systems as matrix-based composites or polycrystals, and focus our attention at
a sufficiently large representative volume which has the same effective properties as any
other volume of such or larger size. If a matrix is present, then it will be denoted by r = 1,
andr = 2, 3,..., N will represent the reinforcing phases. All phases are linear thermoelastic
solids, their constitutive relations are

0. =L, +10, & =Moo +mb, r=12,....N, )

where @.. ¢,, L.. 1, 6, denote, respectively, the stress, strain, stiffness, thermal stress tensors
and a uniform temperature change. M, = L' and m, = —M,], are the compliance and
thermal strain tensors.

Damage in composites may be due to internal cavities or cracks, and imperfect bonding
between the phases. Imperfect bonding may be regarded in terms of a thin interphase region
of certain stiffness, or as interface cracks and cavities. The interface between phases  and
s will be representad in this paper by an idealized geometrical surface of 2ero thickness.
Nevertheless, it will be convenient to think of these interfaces as two-sided surfaces S,, and
S., adjacent to phases r and s respectively ; such a notation will also help symmetrize many
expressions in the paper. The displacement field may or may not be discontinuous across
such interfaces. Should a cavity or a crack develop between the phases r and s, the surface
of that vacuous zone will be denoted by S,, and S,,. The surface S,, will be that in contact
with phase r, and S,, that in contact with phase s, (see Fig. 1a). The phases may also contain
internal cracks or cavities. The surface of such a defect which is internal to phase r will be

Tig. 1. (a) Interface between two phases r and 5. (b) Possible choice of coordinate systems at
interfaces.
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denoted by S.,. In the case of a thin crack in phase r, it may be convenient, though not
necessary, to consider the decomposition S,, = S, U S where S;; and S, denote the upper
and lower surfaces of the crack. '

At any point on the interfacial surface between phase r and phase s, it will be convenient
to define the unit normals n”’ = —n'" from phase s to phase r. At the surface of a cavity
or crack which is in contact with phase r we will define the normal n"” from phase r tinto
the vacuous zone.

The displacements and tractions. together with the unit normals described above at
any point x of the interfacial surface, will be described in a single Cartesian coordinate
system. This Cartesian system can in principle be fixed in space, but can also be conveniently
chosen at the generic point x on the interface. [n the latter alternative, we may choose either
(n"”', p, q) or (n“", p, q) where p and q describe the tangential unit vectors at the interface
(see Fig. 1b). For a cavity or a crack, we will choose (n'"'. p. q). With no loss of generality,
we thus adopt the coordinate system (n""", p, q), where in the case of a pore or a crack there
isr=s.

At any generic point x of the interface. let us define the traction vector exerted from
phase r to phase s as t*’, and from s to r as t*”:

t(r:) - ("\’rs). r;rs), I:’”)T, tun = (’S’:r)' l::r)‘ l(q‘"))T. (2)

We note that both are expressed in the co.  ~ate system (n'"”, p, q). Regardless of the
nature of the bond, t" must be in equilibriu.  «th ¢, thus

.

t(m+tlm - 0 (3)

For a generic point x, at a surface S,, of a cavity or crack adjacent to phase 7, it follows
that

t(n) - (’5'")’ ’;’")' t:’"))T = 0. (4)

where the quantities are described in the coordinate system (n"”, p, q) defined above.
Displacement vectors at any point x of the interface are defined at each side and

expressed in the coordinate system (n'™*', p, q) as:

u(r) = (us'r)’u(;). u(qr))‘l" “(J) = (ll,(,'“, u(;)’u(vﬂ)'l" (5)

the difference or jump in those displacements across the interface will be denoted by
[\l] = u(r) —u®, (6)
These conventions permit us to define the following types of interface bonding that

will be of interest in the sequel. A perfectly bonded interface which does not contain any
interphase layer is characterized by the relations

= —t" %0, [u]=0. )

At a debonded interface which is actually considered a cavity or a crack,
t =0. 8)
Our interest will frequently focus on imperfectly bonded interfaces, which allow non-
vanishing relative displacements to exist together with nonzero tractions. The implication

is that the displacements and tractions are related in a certain way at each instant of loading,
as if the interfaces were connected by a very thin layer of interphase material. We limit our

SAS 29:23-¢
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attention to systems where such relationships, or the properties of the interphase, are
described by the incremental form

dlu,] = M,,(t°)ds,,
d[up] = Mpp(to)dl,'?'MN(to)dl’,
du,] = M, (t°)d1, + M, (t°)d1,, ©®)

at each current magnitude t” = — ¢ = t° of the interface traction ; for simplicity we have
denoted (dt,, d1,, dr,) = (dei”,des”, del""). The M,,, with 2, § = n, p, q, are the instan-
taneous “‘compliances™ of the interface, or interphase layer, and are assumed to be rep-
resented by smooth, continuous functions, that satisfy the symmetry condition M,, = M,,.
Since the interphase is assumed to be very thin, the contributions of the terms M,,ds,,
M, dt,, etc., to d[u] are considered to be insignificant and are neglected.

The imperfectly bonded interface that can be represented by (9) includes nonlinearly
elastic coatings, and also interfaces which are weak in shear but perfectly bonded in the
normal direction, in which case M,,(t°) = 0, and [u,] = 0. The representation (9) may imply
an interpenetration in the normal displacement components u, across the idealized interface
in the case of a normal compressive traction. However, since we limit ourselves to small
strains, and since these interfaces do in fact represent interphase regions with a certain
thickness, such interpenetration can be accommodated by compression of the interphase.
Interfaces that exhibit frictional contact, perfect bonding, or complete debonding are not
represented by (9). Indeed, interface friction would relate the tangential components of the
traction to the compressive normal component when [u,] = 0, but without reference to the
magnitude of [u], although the ratio of 1/’ to ¢! may determine the direction of [u].

2.2. Local fields

Let a representative volume of a composite material be subjected to an overall uniform
stress @, or strain &, and to a uniform temperature change 8,. In particular, we select the
overall thermomechanical loading on externai surface § as

u(S) = 8X, 6(S) = 8o, (10)

so that & = 8,, and examine its effect on local strain and displacement fields in the phase.
We assume that the local fields can be evaluated by an independent analysis of each
specific system. Examples can be found in the references listed in the Introduction. In
systems which undergo progressive debonding, i.e. involving changes in the size or location
of the interfaces (8), and progressive deformation induced at the imperfectly bonded
interfaces (9), such analysis may need to be performed at many different points of the

prescribed loading path leading to the current state (10). In any event, the current local
strain and displacement fields can be denoted by

8,(x) = ¢°(x;80,00), 6,(X) = u’(x;80,0,), O(x) = 8, 41))

The displacement and temperature increments on the outer surface S of the representative
volume are incrementally specified for a change in the temperature or strain, as

u(S) = sox, 8(S) = 6,+db, (12)
or
u(S) = (so+dsg)x, 6(S) = 0. (13)

The resulting incremental strain and displacement fields to be superimposed on (11) are:
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dl,(X) = .,(x » 80y 90) deo. dll, = d,(" v 80, 00) deo (]4)

or
d‘,(x) = Ar(X;‘o' go)d&n dur = Dr(x;‘OO 00) d‘O' (15)

where 2,(X; 8o, 85), d,(X; 84, 05) are certain thermal influence functions, and A,(x; &, t,),
D.(x; &, 8,) are the mechanical influence functions. Their dependence on ¢, and 8, is the
consequence of possible progressive debonding and/or nonlinear behavior of the interfaces.

2.3. Overall properties

The overall average strain in the presence of imperfect bonding is the sum of average
phase strains, and strains that may be contributed by the relative displacement at the
interfaces as well as by the presence of cavities and cracks. A derivation for two-phase,
matrix-based composites has been given by Benveniste (1985). Here we present a more
general result that applies to multiphase composites, not necessarily matrix-based, which
may contain cracks and cavities.

Using the notation introduced in Section 2.1, we show in Appendix A that the average
strain in such a composite is given by

N

i=Y i~ 3 ¥ d, (16)
i

re rm| sm|

where ¢, denotes the volume fraction of phase r, N is the number of phases, i’ is the
average strain within that phase, and the second order tensors J,, are given by:

1
JS;") = Z_I’_/ J (Mf') ";n) +u5r)"'(r:)) dsm Jgr) = 2_‘; j‘ (ll,(” n;r) +u}”n§"’) dS,,. (17)
S, Se

It is noted here that thinking of the interface surface between the phases r and s as two-
sided surfaces S,, and S,, allows a symmetrical representation of eqns (17), and (17),.

It is often convenient to introduce concentration factors that reflect the presence of
damage. In particular, under the load increments prescribed in (12) and (13), one finds
from (14), (15) and (17):

dJ,, = ,,(.o, OQ)de"'f,,(lo, 90) dOQ, r,s= 1,2.. e ,N. (l8)

where the concentration factor tensors F,, and f,, are related to the D, and d, influence
functions in (14); and (15), as:

1
Flu= >3 | (DL + DX (x)n{™) dS,.
2V s,
= = @ (x)nf™ +dj” (x)n\™) dS,,. (19)
2V s,

The concentration factors F, and f, related to dJ,, are described simply by inter-
changing r and s in (18) and (19). Together with the related factors defined in (14) and
(15), they facilitate the description of overall properties of the damaged composite materials.
We refer again to the representative volume of a composite material which is subjected to
overall uniform stress 4, or strain § and to a uniform temperature change 8,. Since the
overall response is not necessarily linear, it is sought in the incremental form
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dé = L(2.0,)d&+1(2.0,) d6,.
dé = M(&.6,)dé +m(z. 6,) dé,. (20)

where L(Z. 8,) and |(£. 8,) are the instantaneous stiffiness and thermal stress tensors which
depend on the current overall strain and temperature. The M(&. 8,) and m(z. 8,) are the
corresponding compliance and thermal strain tensor..

These effective properties can be determined once the concentration factors a,. A,. the
volume averages of the influence functions a,(x: &,. 8,). A.(X; &. &) introduced in (14)
and (15). and the tensors F,,, f,, defined in (19) are known. Equations (14),, (15),, (16).
(18) and (20). readily provide the following expressions for L and | :

v NN
L(ep.8,) =L, + Z c.(L,—L,)A(¢.80)+L, Z z F..(8.6,)
rm rm| s=|

v

v N N
l(eo,eo) = z C-Ir+ Z cr(Lr_Ll)ar(‘0'60)+Ll 2 Z (rs(‘0v60)~ (21)

r= rw ) rm| swl

Similar equations can be obtained for M and m.

2.4. Evaluation of L and m

In his (1967) paper, Levin found an expression which relates the thermal stress tensor
| to the mechanical concentration factors A, of the phases and to phase thermal vectors 1,,
in an undamaged composite with perfectly bonded interfaces. An analogous relation exists
between the overall thermal strain tensor m and the stress concentration factor B, and phase
thermal strain tensors m,. Under certain conditions, a similar formula can be derived for
composites with imperfectly bonded or partially debonded interfaces defined in (7)-(9).
The derivation presented here will use the reciprocal theorem, although a similar result
follows from a modified principle of virtual work for composites of this type (Benveniste.
1985). For completeness. we present in Appendix B a derivation of the reciprocal theorem
which accounts for the effect of applied eigenstrain fields and imperfect interfaces.

Suppose that the composite has been loaded to some current known state (8o, 6o, 8,).
where the extent of partial and/or complete interface debonding has been evaluated such
that all coefficients in (9) and the mechanical influence functions A,(x; 85, 8,), B.(x; &.
0,)t and D,(x: &, 0,) in (15) are known together with the instantaneous overall stiffness
L and compliance M = L~"'. In this current state, we apply two separate load increments
(") and (") such that there is no change in the type of interface bonding (7)-(9) on S,,. First,
an overall uniform stress increment de, is applied at the current temperature 8(S) = 8,.
According to (15). this will cause the strain and displacement fields in the phases

ds;(x) = M,B,(x:80.60,) dap = A (x;8y,60,)Mdey, (22)
du;(x) = D,(x;8,,8,)Mdey,. (23)

Next, the overall temperature is changed from 6, to 6} at fixed overall stress @,. This
will cause the local thermal strains m, d8” which can be expressed as

di; = —L,m,d8; = 1,463, (24)

as well as the displacement fields denoted by

+ The influence function B,(x: ¢, 0,) relates the stress increment de, to the local field de.. in the same way
as the function A, relates the strains in (15).
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du; = d,(x:8,.8,) db;. (29)

Let us now use the reciprocal theorem given in (B8) in its incremental form. Note that
dF; = dF;=d4, = dt'=0, and write

N

J‘dcbrdu" dS+J~ dt;y,  [du'}dSm = 3 J. -di','ddeV+J. dey, - [du’]dS,,.. (26)
s S.m v, Sime

ra |

where we have used the notation S, to denote all interfaces between the phases r in volumes
V,. Of course, at surfaces in contact with vacuous zones, the tractions and thus these
integrals vanish.

The first integral on the left-hand side is, by definition. the scalar product of the overall
stress increment with the strain increment de® dé;,. A substitution from (9) reveals that the
two integrals over S, contain terms dt' M, dt” and dt” M, dv = dt’ M7, dt”, respectively.
Since (9) was assumed to admit only interfaces where M,,, = M7, those integrals are equal
and cancel each other. At locations where the interface is perfectly bonded ([du] = 0). or
completely debonded (dt = 0), both integrals vanish.

The remaining two integrals over V are rewritten with the help of (22)-(24). One form
is

v
jdd&llld&‘(,dV= Z {J' L,m,M,B,(x;ao,Oo)dcad%dV}. "N
v v,

rm |

Since M, = MY = L', the right-hand side integrand can be shown to be rewritten as
da,Blm, d6;. Thus (27) can be solved for the overall thermal strain tensor m as

N
m(o,,0,) = Z {J. B! (x:a,. Oo)m,dV}. (28)

re=

An analogous analysis yields the expression for the overall thermal stress vector

N
I(go. 05) = 3 {j; AT(x;8. Oo)l,dV}. (29)

rm |

Taking the phase volume averages of the influence functions over V, gives

N ¥
m(co.00) = 3 ¢,Bf(00,00)m,, 1(00.00) = ¥ c,A (s, 6o)L.. (30)

rm i ra i

This result is formally identical to that found by Levin (1967). however, the mechanical
concentration factors entering here are those of the damaged composite, and as such
they depend or: tive current geometry of the imperfectly bonded or debonded interfaces.
Therefore, (28)-(30) should be utilized in conjunction with an incremental solution of a
thermomechanical loading problem for the damaged composite material. Of course, such
a solution may provide the overall strains, and (30) can then identify the purely thermal
contribution. However, if the geometry changes cease at a certain load level, e.g. because
the imperfectly bonded interfaces have separated. then the mechanical concentration factors
remain independent of further load or temperature changes. Once these become known
from the solution of a mechanical loading problem for the damaged composite, the above
relations can be used to find the overalil thermal properties.
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3. TWO-PHASE COMPOSITES

3.1. Overall properties

First, consider some specific forms of the above results which apply to two-phase
composite systems. Suppose that r = 1 denotes the matrix and r = 2 1 reinforcing phase.
Then the general expressioas (21) for the overall stiffness L can be rearranged as:

L(e%60) = L, +c2(L;—L)A;(2.80) + L, A(g0. 65).
I(e°, 85) = ¢\l +cly+c(Ly—Ly)ay(80.60) + La(s, 6), a3
where the A and a tensors reflect the effect of damage, and the A,, a, are the mechanical

concentration factor tensors of the damaged composite. The overall average strain (16)
now becomes

£=0,8 +ci8;-J, 32y

where £, are the average strains in the constituents, and J is given by the double sum in (16)
taken over r, s = 1, 2. From the above representation, it is seen that

dJ) = A(‘o, 00) dlo + .(Co, 80) d9°. (33)

For two-phase composites, an alternative expression for the 1(s,, 8,) in (31); can be
obtained as follows. First write (32) in incremental form, and recall that under (12) and
(13) di = ds®. Next, make use of (14),, (15), and (33) to obtain

€A ((89,00) +C1A;(80,00) —A(80,60) = I, ¢18,(89,0,) +C28:(80, 85) ~2(a9,0y) = 0,
(34)

where I is the fourth order unit tensor. Finally, write (30), for two-phase media as
1(85,60) = ¢, AT (80, o)1 + 24T (80, 6ol (35)

One can now solve for AT(so, 8,) and AJ(s,, 8,) from (31), and (34),, and substitute them
into (35) to find

1(80,60,) = {L(80,60)—L,}(L;—-L,)"'1:-1,)
+|I+AT(.0v90){|l"LI(LZ_LI)-l(IZ-lI)}' (36)

The diagonal symmetry of the L tensor has been invoked in the above derivation.

3.2. Isotropic constituents with slipping interfaces

We now consider a two-phase system which admits connections between mechanically
and thermally induced pointwise fields that are not available in multiphase composites. The
constituents are both isotropic, and the displacements of the interfaces are limited to
nonlinear slip, i.e. M, =0 in (9). Furthermore, the individual phases are assumed to
contain no cracks or pores. In this particular system, the influence functions a,(x; &,, 8;)
and d,(x; &5, 8,) are uniquely determined by their mechanical counterparts A,(x; 8,, &,)
and D,(x ; &, 8,), respectively. Also, the general formula (36) can be reduced to a particularly
convenient form. The specific results are:

2,(x;80,00) = {I—A,(x;80,00)}(L, -L3)~"'0;=1)),
d'(x;'o.ao) - {x-Dl(x;'OnOO)}(LI—LZ)-|(]1-'I)|
a= —A(L,-Ly)"'Q;-1), 1=1,+(@L-L,)L,~L)"'q;-1). 37
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The validity of these relations will now be proved using the concept of incremental
uniform fields in heterogeneous media introduced by Dvorak (1986). The composite is
subjected to the boundary conditions (10), has the local fields (11), and the goal is to
evaluate its response under a temperature increment df, from the current state, as in (14).

Superimpose on (10) the incremental loads dé and dé, :

u(S) = gox +déx, 6(S) = 8,+d8,. (38)

The df, is given but da is r.ot known ; it is to be determined such that together with df, it
creates a straia field dé, and a stress field d& which are both uniform in the entire rep-
resentative volume. The desired magnitudes of dé and dé can be readily determined from
(1). Write the local incremental fields in both phases, make them equal, and evaluate the
desired strain

dé¢= (L, -L;)" ' (I;-1,)db,. (39)

An analogous derivation (Dvorak, 1990) for a composite under overall uniform stress
shows that a uniform stress field dg can coexist with a temperature change dé, if

d& = (Ml -MZ)-l (mz—ml)dOO.

In the present system with isotropic constituents, both dé and dé are hydrostatic.
therefore, in the absence of normal interface displacements, the above increments cause
only normal and continuous tractions at all interfaces. Of course, this also prevents interface
slip, and the composite responds to the incremental loading (38) as if the interfaces were
perfectly bonded.

To restore the original boundary conditions (12), the auxiliary strain d&@ must be
removed. This is accomplished by changing (38) to

w(S) = ' x+dix —dix, 6(S) = ,+d6,. (40)
The incremental fieids produced by the loading/unloading sequence (38) and (40) are
dz.(x) = dé—~A,(x; 8, 0,) di, du,(x) = déx—D,(x;8,,0,)ds, (C3))

where di is to be substituted from (39). Note that (40) and (12) are identical, hence 8,(x:
20, 8,) and d.(x; 8, 65) can be extracted by comparing (14) with (41). This leads to the
expressions (37), and (37),.

To recover (37),, recall that in ihe present derivation we rule out vacuous zones, hence

A=F,+F;, a=f,+6, 42)

with F,, and {,, being given in (19). A substitution from (37), to (19),, together with (19),
and (42), readily provides (37),.
Finally, a substitution of (37), with r = 2, and of (37), into (31), gives

1(8°,05) = ¢\l +c3ly+ca(Ly —L)A—~A)L, -Ly) "' @, 1) -L,A(L, -L,)~' Q,-1,).
(43)

Solving for A, in (31), and substituting into (42) then provides (37),.

Recall that the thermal stress tensor | for two-phase composites with anisotropic
constituents is given by (31); or (36), and for systems with isotropic phases and slipping
interfaces by (37).. These relations were arrived at by two entirely different approaches,
hence it remains to be shown that they are equivalent under similar circumstances.
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For isotropic constituents there is:

([l)u = 161/'

(L\)uwe = B9,0., +7(3,0,,+0,8,~130,0,,).
(LJ - L I)l—mlm = :(5,,6,,,,, + ;(6rnld\n + 6rn‘5(m - génémn)-
(1:—1|)MH = Aémn‘ (44)

where 2, B. 0. &, (. 4 are constants. Writing AT in indicial notation and carrying out the
summation in (36) according to (44) shows that the tensor AT enters only as (A"),,,.
Moreover, the continuity of normal displacements at S,,, which was assumed in the above
derivation of (37),, implies that according to the definition of the A tensor. in (31)-(33).
A, = 0. orin fact (AT),,, = 0. This leads to the conclusion that (36) indeed reduces to the
form (37), when the phases are isotropic and the interfaces may experience only shear
displacements.
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APPFMDIX A

Equation (16) will be derived in this appendix. The considered multiphase composite may contain pores and
cracks at arbitrary locations, but need not be matnx based. see Fig. Al (or a typical volume of such a composite.
To derive eqn (16) 1t is sufficient to consider a three-phase composite as in Fig. A2. Note that phase 3" is in
contact both with phases “r" and “p™, a situation which would occur in non-matrix based composites. The
notation in this figure is that described 1n Section 2.1. The denived average strain for the configuration of Fig. A2
can be readily generalized to multiphase composites of the type described in Fig. Al.
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Fig. Al. A multiphase nonmatrix-based composite with defects.

We start by writing the average overall strain for the composite (Benveniste, 1985)

g = .2_"., j; (un,+un)dS, (A1)

where S denotes the outside surface and a the outward normal to S. The average strain in phase 7 can be written
as

i ou!”  Cu'” !
=" ¢ / - (] {r
£, = Z_V, J.y (-—e y + -0 ‘)dV. Z—V,L (u"'n, 4+ 1} n)ds

| i
+ = Va4 y"a™MdS, + ‘ w4 4'n'7)dSs,
ZV, J‘S,, (ll 1 ’ 2V, s, ( ’ ’ ) »

+ W |, @"n/” +4"n{™)dS.., (A2)

where Gauss's divergence theorem has been used.
Similarly, we can wnite the average strain in phases s and p as follows:

& =

1§ 1
W, L @"n* +uni™"y dS,+2—V-; J‘s @™ +u'n{®) dS,,

& = flV s (u}"n}”+u}"n}")d5p+fll7j; " +ul n) dS,, (A3)
LA (AL ]

Fig. A2. A three-phase composite used in the derivation of the average strain.




2918 G. J. Dvorax and Y. BENVENISTE

where ¥, and V, denote the volumes of phases s and p, respectively. The total volume ¥ = V, - I, + ¥,. Muluiplying
eqn (A2) by ¢, = V./V. and equation (A3), and (A3); by ¢, = ¥,V and ¢, = V,. V. respecuvely. and adding.
results in .

i= C,l-"’ +C,i"' +C,iu' —Jen —gon _ gue _ gon _J"' —Jor g, (Ad)

where we used the definitions in (17). A generalization of (A4) to multiphase composites provides eqn (16).

Equation (A4) or (16) reduces correctly to eqn (3) in Benveniste (1985) and (29) in Benvemsie and Dvorak

(1990b) which were written for two-phase matrix-based compositest. To draw a parallel with eqn (3) 1n Benveniste
(1985), we simply note that o in that equation is given in the present notation by

n=p%"= —g!'?, (AS)

where 1" denotes the matrix and “2"* the inclusion and [u,] was defined as

(u]s,, = u?—u'" ar§.. (A6)
so that
I
Z—VJ; ([wln,+{uln)dS,, = J; +J1),,. (AT
[}
Recalling that no vacuous zones were present in the phases in these previous works, J,, = J;; = 0. and it is seen

that eqn (3) 1n Benveniste (1985), and (29) in Benveniste and Dvorak (1990) are simply special cases of (A4).

APPENDIX B

An extension of the elastic reciprocal theorem to the situations in which the linearly elastic body contains
interfaces of the type described in Section 2.1 can be written as

'[Ffu;‘dw- J. (udS+ J. lf"'ui”'ds,,+J. "yl ds,
v s S s,

-J. I-Tu:dV+J ﬂu:dS-f-J. bl dS,,+J 1y dS,, (Bl)
v s s, Se

'

where u; are the displacements caused by the system ¢, F7, and | are the displacements caused by the system 7,
F.

When distributions of eigenstresses i/, = /8" and 4, = [, 8" are respectively applied to the two systems, the
local stress field is given by

o,(x) = F(x)+ 4, (82)
where
a,(x) = L a(x)ey(x). (B3)
The field (B2) satisfies

&, +F+4,,=0 iV,
d,n+i,n =1 onS,
T+ inM =" onS,,
& +in™ =™ onS,. (B4)
A similar representation holds for the double-primed system.
Define new body forces and surface tractions
F=F+i,, i, = t,—A,n,

ﬂr) - ':.D_A""";u)‘ ,"(ni N W T (BS)

and rewrite (B1) with F’, F" replaced by F., F7. 1, by 7\, i) etc.
Consider first the right-hand side of (B1) rewritten as described above and substitute from (B4) to find

+ Note that there is a misprint in the definition of J in eqn (30) in Benveniste and Dvorak (1990). The term ¥
should be replaced by ¥, in that equauion. as well as in eqns (36) and (47) of that work. Therefore, as we show
in (A7), the correspondence between the J term in Benveniste and Dvorak (1990), and the J,,, J;, terms in the
present paperis: cJ = (J3,+d ).
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- r
J F.'u;dmj 2 oudb - J (1',’-—).,",;1,)u,'d$*j (5 =5 dSn—J (1 =i dS,,. (B6)
v v s s, .

5.

Manipulating the second term in (B6) through the divergence theorem. one finds

~ - ~ »

J Zudb = J iun, d5+f ;.:',u:"n""ds,.»J f'.:;u:"n;“'ds,,—J K, dV. (B7)
' s s.. v

Sy

Moreover, u;, = £, ~w,. and since 4, = 4, w, = —w,,. it follows that when (B7) is substituted into (B6). some
of the integrals on S and §,, cancel out.

A similar procedure applied to the left-hand side of (B1) yields the form of the reciprocal theorem which is
valid under internal defects at S.. and in the presence of eigenstrains 4, = [ 8 :

~ -~

JF,’u;'dV-o- J z;u;'ds-' ;.;,e;;de 0 dS,,fj 67w ds,
b 5 4 S, S.

=J. Fj'u;dl"+"‘ tu, dS—J‘ ij’,a:,dV+I 1w dS,,+J. 1y ds,. (B8)
v s v S, s,

[t 15 1nteresting to note that although the lineanty of the consututive law in the phases has been assumed in (B1)
and (B8). the constitutive law of the interfaces does not exphcitly enter in these equations. In other words the
relation between the interface tractions and the resulting interface displacements have not explicitly been used in
(B8). We finally mention that eqn (B8) can also be used for an incremental set of loads (dF,, dr,, di;) and (dF;.
dr, da;;) which are superimposed on an existing equilibrium state of deformation.
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A variational approximation
of stress intensity factors in cracked laminates

G. PIJAUDIER-CABOT * and G. J. DVORAK **

ABSTRACT. — A vanational method for solution of plane crack problems in anisotropic layers of laminated
plates is presented. The method is developed for a single slit crack which spans the middle layer of a
symmetric three-layer laminate, and is loaded by internal pressure. The actual stress field 13 approumated by a
superposition of an asymptotic expansion of the exact singular field at the crack terminating at the interface
between two orthotropic layers, with a statically admissible stress field which approximates the stresses at
locations far from the crack. The singular fieid is made to vanish outside a cylindrical region surrounding the
crack up, called the K-zone. Evaluation and mininuzation of the compiementary energy of the admussible field
provides an estimate of the stress intemsity factors and crack energies. The exact order of singularity is
introduced with the singular field. Comparisons with exact analytical solutions show good accuracy. The
method offers approximate but simple closed-form solutions to crack probiems in layered media. and it can
be readily extended to utuations involving many similar slit cracks which interact with esch other.

1. Introdection

Damage development in fibrous composite laminates is often dominated by growth of
transverse cracks in individual layers. Figure | shows a typical example of a model of a
transverse crack in a single ply of material 1, bonded to adjacent plies of material 2. In
actual systems, all plies are usually made of the same unidirectional fiber composite, but
the orientation of the fiber is different in each ply or group of plies. The matrix and the
fiber — matrix interfaces provide a convenient path for crack growth, hence it tends to
take place on planes and in the direction paralief to the fiber axis in each ply. The fibers
may be bypassed by the crack in the broken layer, but as their orientation changes at
layer interfaces, they produce barriers to crack growth, and confine the crack within the
thickness of a single layer. Consequently, the morphology of the crack surface is rather
complex. In particular, the geometry of crack tips at ply interfaces is not well defined,
as the crack may either break some of the fibers in the next layer, or be briefly deflected
along the interface.
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Damage affects laminate stiffness and strength. hence prediction of these effects is of
interest in design. Models of the damage process can incorporate only a hmited amount
of microstructural detail. The fibrous lavers are usually represented by orthotropic or
transversely isotropic homogeneous elastic solids which are assigned some effective elastic
properties. The uncertain details of crack zone configuration are ignored on the grounds
that the siresses and strains away from the tup zone, and the energy released by the
crack. dre still goverred by th2 elasuc singuianty. The crack energy 1s of parucular
interest. as its magnitude controls both the crack growth and the resulting stiffness loss

Interaction between the crack and the adjacent layers. and between several similar
cracks in the same layer are among the essential features of such probiems. These
interactions have an influence not only on the magnitude of the stress intensity factor.
but also on the order of singularity at the crack tip. Some exact solutions for cracks in
layered media appeared in the literature. [Ashbaugh 1973]. [Cook & Erdogan 1972]:
[Delale & Erdogan 1979]; [Gupta 1973]. but they seem to be available only for certain
mutual onentations and material symmetnes of the layers. On the other hand. the
structure of singular fields of cracks terminating at interfaces between anisotropic haif-
planes of any orientation has been brought to light in the work of Ting er al. [1981. 1984],
but it appears that these results have not yet been utilized in solutions of cracks in
layered media.

The purpose of the present paper is to present a variational procedure for solution of
crack problems of this kind. The general approach is similar to the recent work by
Hashin [1985). An admissible stress field is selected for evaluation of the complementary
energy of the cracked laminate: this energy is minimized, and the resulting admissible
field is then used as an approximation to the actual field. The accuracy of the result
depends in a large measure on the selected admissible field. In what follows we construct
this field by superposition of a nonsingular far field. and a singular field which is exact
at the crack tip, but is made to vanish within a certain distance. Section 2 outlines the
superposition procedure. The singular field is constructed in Section 3. and constrained
1o a certain region at the crack tip. the K-zone, in Section 4. The nonsingular far field is
derived in Section 5, and the complementary energy is evaluated and mimimized in
Section 6. Although the procedure may be extended to laminates of many different
layups. we focus our attention at the symmetric 0/90 layup. and at comparisons of the
resulting crack and complementary energies. and stress intensity factors. with many
available exact solutions. The agreement between the exact and approximate results is
satisfactory.

2. The superposition scheme

Consider a three-layer composite laminate. in the configuration indicated in Figure 1.
The in-plane dimensions of the laminate are much larger than the total thickness 2h. A
slit crack has been introduced into the middle layer which is made of some homogeneous
matenal 1. The crack terminates at interfaces between the middle layer and the adjacent
layers made of another homogeneous materia! 2. [n the present solution of this problem.
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both matenials are at most orthotropic. their planes of elastic symmetry coincide with
the coordinate planes. but the respective elastic constants assume different magnitudes.
The laminate ts subjected to a remotely apphed umform normal stress in the !sngitudinal
direction. Our goal ts to find an admussible stress field in the x, x,-plane of the lamnate.
such that it sausfies the prescribed boundary conditions and incorporates known singular
terms at the two crack tps. A state of plane stramn i1s assumed.

The superposition procedure we propose to follow is outlined 1n Figure 2. First. stresses
are evaluated in the uncracked laminate under :he remotely appiiec tension load. Those
found in the middle layer must be canceled by the stress applied at the surface of the
crack. In the present case, the stress o,; = —P is the sole surviving component. hence
we seek the solution for the cracked laminate loaded by this stress only. The desired
admissible field is decomposed into a singular field 6%(x,. x,). and a far field 6f (x,. x,).
Each of these fields will be associated with a normal stress o, applied at the surface of
the crack. these surface stresses are denoted by @, and o,. respectively. The superposition
suggests that the following condition must be met at the crack surface:

N P=o,+0,.

The singular field will incorporate the stresses derived from the known elasticity
solution for a single crack perpendicular to the interface of materials | and 2, Figure 3.
However, to assure boundedness of the contribution to the total complementary energy
by the singular field. and to avoid additional stresses at the outer boundaries of the
adjacent layers. the singular field will be limited to a cylindrical region at each crack tip.
These regions will be referred to as the K-zones. In Figure 2. their radius R is selected
as equal to the half-thickness of the middie layer. R=¢; if r<c, then R=1¢. This choice
avoids direct interaction between the singular fields, but indirect interaction is expected
to appear, especially in nonsymmetric laminates. through the far field. In any event. at
the boundary S (r= R) of the K-zones. we require that

(2) &.0=0 onS

where n is an outward normal to S. In general, the stress field derived from the solution
of the crack problem in Figure 3 will not satisfy this requirement. Therefore, we introduce
within the K-zones an additional field ¢°(x,, x,) such that

(3) (6*-6°).a=0 on S.

The derivation of the field o® follows the separate superposition scheme indicated
schematically in Figure 4. The singular field ¢* from the problem in Figure 3 is foynd.
and the resulting tractions T, (a), T,(x) at S are evaluated. An admissible singular field
which satisfies (2) is constructed by superposition of the actual singular fieid with an
elastic field ¢° within S. In the present approximation. the latter will be found for an
isotropic elastic cylinder of radius R. loaded by surface tractions T,, T,. Of course, this
will create additional stresses on the crack surface which need to be removed. In the
present analysis, we accomplish this only in the average sense, i.e. we apply at the crack
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surface ( ~c < x, <¢. x;=0) the uniform normal stress

']
4 o,=- 1J 02, (x,. 0)dx,.
¢Jo

The form of the singular solution assures that ¢® does not create any shear tractions on
the surface of the crack.

From the original superposition Eq. (1) we now evaluate the stress
(5 o,=P-g, for (-c<x,<c x;=0),

which remains on the crack surface, and which needs to be accommodated in the
nonsingular far field solution of the problem.

In what follows, we first construct the singular field o5, then the admissible field 6° of
Figure 4, and finally the admissible far stress field 6.

3. Stresses at the crack tip

Elasticity problems in composite laminates with broken plies are usually reduced to a
system of integral equations which may not have known closed-form solutions. However,
analytic forms of the singular fields at crack tips residing at interfaces between dissimilar
anisotropic materials are available. Ting er al. {1981, 1984}, using the method of Stroh
(1962], found such forms for plane problems of this kind. For our present purpose, we
recall and specialize these results for a mode I crack. :

Consider again the crack configuration in the coordinate system of Figure 3. Denote
the respective stiffness tensors of the two materials by L{}, and L{Z,. Attention is
restricted to two-dimensional stress and strain fields 6* and €. The relevant compatibility,
constitutive, and equilibrium equations are:

(6) el =i +ul)2
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’ k1 & Sk
(N O,.SJ =LiumEim

where the superscript k= (.2, denotes the matenal, and the subscripts assume values |.
2 for x. v. At first we are concerned with a general solution of Eqs. (6-8). The transforma-
tion [Stroh 1962]

9 w=V f(2)
(10) s=x+py

where p and V, a.¢ constants and fis an arbitrary function. converts (6) and (7) into

af
11 0-‘5= . —
(1) ] t'd:
(12) tu=(L|jk1 +p Lijhl)vi'

In (9). the superscript & has been omitted to simplify the notation, but two different
solutions are anticipated for the two materials.

The differential equations of equilibrium become:

(13) H,V,=0 with Hi;’Liljl+P(Liljz+lejl)+szi2ﬂ'

LY B}

We seek a nontrivial solution of these equations, i.e.. a homogeneous system (8) such
that:

(14) 1 H, ) =0.

This is a sextic equation in p. Stroh [1962] shows that p is not real and that (14) admits
three complex conjugate roots (p,. p). L=1.2.3. Accordingly. there are six eigenvectors
(VE, VL. At this point. we can remark that these equations hold both for plane strain
and generalized piane stress; only the stiffness L, ,,, needs to be modified for each specific
case.

For the present case of orthotropic matenials with the principal symmetry planes
coinciding with the coordinate planes, we use the customary contracted nc.>‘ion
Gy =C,....0323®C,,...€23%€,;, ... 28 =&, etc., and write the constitutive equa-
tions as:

The matrix H;; then becomes:
Lii+piLles P(Ly3+Lgg) 0
H;=] p(Li2+Lss) Le+P’L,y, 0
0 0 Lys+p L
and Eq. (14) reduces to
(16) Lys+p*Leu=0
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t a4

or to
(17N (Loo"P:Lu)“-n‘PlLoo)‘P:(le"Loo):"Q

Ting & Hoang [1984] explain that (16) pertains to the out-of-plane motion of the crack
surface. and (17) to motion in the xy-plane. In our application. the chosen matenal
geometry. and loading symmetries aliow only the latter motion. [n general. modes [
and [l cannot be separated. but are independent of mode [II. Then. (14) 1s a quartic
equation. We assume that p, are single roots: this is not true when the maternal | or 2
are isotropic. that solution cails for a special treatment which was given by Ting & Chow
[1981].

The general expressions for displacement and stress field follows from (13) as:

2

(18) =Y (Vi G+ Ve (G
L=1
2

(19) of=Y (t Y ?.~‘-5.—>
L=l dz, d-‘-'|_

where

(20) -:|.=X+P(.}'

ILEXTPLY.

This solution is expressed in terms of four arbitrary functions (f,. g,). L=1.2. Since
we wish to find a singular stress field. we choose

f(_(og)'AL°l *(1=-x)

2D
( gL(-L)=BL-L-'/(l-’C)

in which A_ and B, are complex constants, k€ [0. 1] is the order of singulanty and is
equal to 0.5 when the materials | and 2 have identical properties. Otherwise, x is not
immediately known.

Eqs. (18) and (19) may be rewritten in polar coordinates (r. 8) as

@) u;-(-l‘:_ z (g Re(VEEL™")+G, Im(V*EL ™))
23 o,‘,-r"L);{aLRe(z EC+a Im(thEC™ )
where

bomAemen
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In each of the two matenials. this solution depends on four real constants a,. g, and
on the order of singularity x. These constants can be determined from the boundary
conditions. Since we have restnicted ourselves to the opening mode 1. we also restrict the
boundary conditions to those existing in the quadrant ¢, >0. x,>0. The conditions on
the crack surface are:

(25) o}'=0, o3'=0 ar8=n

for remotely applied load. The interface conditions are:

offt=olit. ol =ol
uslu)susl(n' lti”’=ll§‘2'

(26) at B=n2

In addition, the stress components satisfy the symmetry relations:

oliP (x. =1 (x. —y)
@2n a3 (x. y) =03 (x. —)
ol (x. = —o1¥ (x. =)

These relations also hold for material 1. but the stresses need not be expressed in
terms of the same constants a;, g,. because of the discontinuity created by the crack. In
other terms, symmetry reduces the number of unknown constants to two in material 2,
but four constants remain in material | because modes I'and II remain coupled.

Eqgs. (25) and (26) may be written in the form
(28) Kg=0

where
‘,[a(lu' Ex”- d‘z“. ;z“' a(lll. 5!22)]7

and K is a (6 x 6) nonsymmetric matrix, a function of x. Again (28) is a homogeneous
system of algebraic equations, a nontrivial solution exists only for || K || =0. In the general
case there exist three real roots for K, associated respectively with the antisymmetric out-
of-plane motion and with the in-plane motion of the crack surface. Therefore, the
condition (27) provides only a single root x in the present case, and (28) is then solved
for the eigenvector g=[1, &Y, a4"', &', ¥, dP'|". The stress fields in materials 1 and 2
are proportional to a single constant, say 4\''. and so is the stress intensity factor K.
defined as:

(29) K= lim 03" (r. 0)r /2.

r=0

From (23) it follows that

2
(30) K= l"\/ 23 (.

L=y
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The obtained solution ts an asymptotic expansion of the exact solution near the crack
up. Althouth this solution may be viewed as a possible statically admissible field in the
composite laminate. it turns out that the complementary energy found from this field 1s
infinite when matenial 2 1s unbounded.

4, Stresses in the K-zone

To assure boundedness of the complementary energy term denived from the singular
field in section 3. it is necessary to confine the volume affected by this field. As suggested
by (2) to (4). the field is admitted only within a cylindrical domaia of radius R surround-
ing the crack tip, which is referred to as the K-zone. This constraint is enforced by an
auxiliary stress field ¢® which remains to be found. Figure 4 indicates the boundary
tractions which are in equilibrium with ¢® on r=R. Eq.(3) guarantees that the total
stresses due to the singular field vanish at r=R. while (4) assures that the resultant of
the normal stress caused by o on the crack surface is equal to zero. Due to the symmetry
of the applied tractions about x, =0, the same is true for the shear resuitant. The field
o® needs to be admissible rather than exact. hence it may be represented by a stress
distribution which would exist in a homogeneous and isotropic elastic solid under the
prescribed boundary conditions.

We now proceed to derive the stress field 6° from Mukhelishvili potentials. The
coordinate system of Fig. 3 is adopted. A homogeneous. isotropic cylinder of radius R
and unit thickness 0 <z <1 is subjected to tractions T, (x) and T,(xz) on S. as required

by (3):

31 T(x)=(e*.n(2))ds
or
T,.(2)=[c2 (Rcos(a), Rsin(x))cos(a)
+ 0% (Rcos(a), Rsin(a))sin(a)} R da
T, () ={o% (Rcos(a), Rsin(a))cos(a)
+ o3 (Rcos (@), Rsin(a))sin(a)| R dx

o™ is the singular stress field in Section 3 (Eq. 23). with k=2 for xe(—x:2. r'2]
(material 2) and k=1 for xe[r/2, 3r/2] (material 1). These boundary tractions satisfy
the overall equilibrium condition

2=
(32) J. T(a)da=0.

[}

It can be verified that the moment equilibrium is also satisfied.
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The stress potentials for a disk subjected to the point loads are (Mukhelishvili 1953):

| -
0(:)=T{(T,(z)~rT‘(1)j‘——:f‘l
(33) '"I -: 2
Y= ——{(T‘('z)*iT\.(:));*_L_l

n

2 5= (5 -0

- -

with the notation

34)
( =c=re™

{ z,=Re"
In the complex plane. =, denotes the location of the point loads and - denotes the
points at which stress is evaluated. The field 6° then follows from the relations

y

(35) { o2, (1) + 0B (x) =4 Re(®(2))
ol (1) -0l () +2ic,, (W) =2[7C () + V()]

which leads to the final result

(36) ch(z)_T,(u){cos36+3cosB_cosz}_T,(u){sm36+smc-+s..-.:}

n r R 2 r R
cﬁ",(u)zT‘(z) cos@—cos38 cosa +T,(:z){sm39-3sm6_sm:}
n r R 2n , R
o® ()= _T.(:t){sm39+sm9}_T,(a){cosle-#cose}_
21! r 21[ r

Integration with respect to %. and transformation from the local(x. y) to the globai
coordinates (x,. x,) coordinates gives:

"2z

c,"’l’l = 02. (1) dﬂ
0

(f2n

(37) o%=| o(a)da
JO

]

of=| o (a)da.
O

The average stresses on the crack face are found as in (4):
{ R 2 ] R s
(38) a,= —-J‘ J o3, (a) dadx,, g,= ——J J‘ o, (a)dadx,.
€ Jo Jo CJo Jo

Due to the symetry with respect to the ) axis. @, cancels over the total crack length.

As suggested by (31), the tractions are proportional to the factor 4\'’ in @, or to the
stress intensity field K,. Therefore, the traction o, on the crack surface is also proportional
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to K,. If 8 15 defined as a coefficien’ of proportionality. the superposition Eq. (1) becomes

(39) P=o,~6K,

Of course. the actual magnitude of the stress intensity factor 1s not ver known. 1t will
be obtained later. from minimization of the complementary energy of the total admissible
stress field.

S. The far field

Up to this point. we have derived admissible fields at the tip of the crack. To complete
the derivation in the entire solution domain suggested in Figure |. we now proceed to
find an admissible field in the entire laminate. This is a nonsingular field 6f which
satisfies the traction boundary conditions on the crack surface suggested by the superposi-
tion Egs.(1) and (39). i.e.. 65, =0,. and which vanishes at infinity.

The geometry of the domain under consideration appears in Figure |. The inner and
outer layers are made of two different orthotropic matenals denoted by the index k=1, 2.
The elastic constants are denoted by E%,. E%;. G},. V4,. etc. Stress fields in materials |
and 2 are denoted by af '*'. and ¢f '¥. A plane strain solution is sought in a domain of
unit thickness in the x, direction.

The boundary conditions are defined as

0 foitetitctitelit=0 & ]~

cf;Z)‘cf:Z)’o at ,xli=h=c+(

on the externa!l surfaces of the domain, and as

F“)=O’ L =0
(4]) {022 s/ a AP

of{i"=0 x,€[-c. ]

on the crack faces. [n addition, the following interface conditions need to be satisfied at
[x,|=c

of (V(xe, x)=0f ! (xc, xy).

(42
) of i (e, xy) =0l (xc. x,).

Overall equilibrium in the x, direction requires that

+h -h
(43) J‘ 0%,dx, =0, J. of,dx, =0.

At this point, various expressions may be proposed for f. For example, Hashin [1985.
1987) used a piecewise uniform distribution of of,. This approximation is acceptable
when the thickness ¢ <c. However, for ¢>c. which is the most common case in actual
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laminates. we select the following distribution of of,.

1

Fil
(44) O12 =00 lx)
12 =0 expl=x, NY,ix,).

2}

c

In the outer plies. the stresses decay exponentally. this will be seen 1o umprove
substanually the accuracy of the subsequent estimates of the energy released by the crack
m laminates where t»¢. From these assumed forms we derive the following stress
components, still in terms of the as yet unknown functions

ofi(x. X)) =, 0, (xy)
i it (x,. xp)=—0,0,(x;) . X,

Fl - x}_ ¢
O (X X)) =+ 0,0, (x,). 7";*”}

o5y = - W oft - afy"
-0,
(e~:/l,e-h/l)
=G,C
(e—m_e-h/:)
—0o,cl
(e-m_e-h/r)
ofid= - v ol ¥ - v} ofi?

(45) o543 (x,. x,)-, @, (x;)e 1"

olel)(xh xz)- w.l (xz)(e-llu_e-hu)

oll-'llzb(xh xz)- (p'l'(xz)(e-xln_e-hn).

These expressions are valid for x, >0, the forms for x, <0 follow from symmetry
conditions. Note that @, (x;) is the only unknown function to appear in (45). because
the overall equilibrium conditions (43) provide a relation between @, (x;) and @, (x,).

The boundary conditions (40) and (41) impose the following requirements on @, (x;):

@, (0)=1
(46) _ ¢ (0=0
lim @,(x;)= lim @, (x;)=0.
23 =~ ® X3 = ®

This completes the evaluation of the far field in terms of @, (x;) and o, which remain
to be found.

6. The complementary esergy

Now that the forms of the various components of the admissible stress field in the
solution domain in Figure | are known, we proceed to evaluate and then to minimize
the complementary energy U of the field:

47 U-%J' (*~e®+e")M(e*~e®+a")aV
v
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where M 1s the compliance matnx of the laver matenals. The expression s further
developed as:

. l SR *n
(38) L=;. } (a5 - 6°) M (a° - a®) dr 2B

-~ v0 <0

“R "z -

*‘J ' (GS—GD)Mo’drdB-#é ¢ Mafuav
0 vO -Jdy

CA

The last integral is further expanded into [Hashin 1985}:

| * .
(49) 5 J‘ GFMUFW"‘G;CI (Do (@, (x2))? + Dy, (9, (x,))?
v )

* DOZ ®, (Xz)‘lh (X2)+ Dzz(‘D; (-‘:”z dX:

where D,; are constants which depend on the dimensions ¢ and ¢ in Figure i. and on the
elastic constants of the layers.

Unfortunately, the second integral or cross-term in (48) gives an expression in do, (x,).
its derivatives and non-constant coefficients. The equation

U(o, (x;)+do, (x2))— U@, (x;))=0

can be solved only numerically, which requires a large amount of computation. To avoid
this difficulty, we choose to perform a successive minimization. First, the contribution
of 6f to U is minimized and @, (x,) is found. Then, the complementary energy is
minimized with respect to K, and an optimum value of K,, subject to the restrictions
imposed by our procedure is established. While the solution is not the best possible
approximation, numerical implementations show that the cross-term is small, typicaily
not exceeding 0.1-0.15U.

The successive minimization is thus performed in two steps. First we find the best
statically admissible far field eF. Next, this field is superimposed with the singular field
in the K-zone, the complementary energy is minimized, and the corresponding magnitude
of K, is evaluated. In the first step, minimization of U with respect to @, (x,) yields the
fourth-order differential equation

(50) Doo @1 (x3)+(Dg; =D, ,) @ (x3) + Dy, 01 (x5) =0
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in which
D ! - i c (e"’“—e':"’)}
0o S . T = ralid
ESO -V ERO-VvD) T e memy |
2
¢ ¢ {
= ; o=t _ -2kt 3 Mt -tk -2ht
Pui=s x‘;’o'fs(e-u-e-wz{"" CTAeT e e
! At
03225111 | = iyt ﬁ* +A?
(51 L (L= vy vily) (2 3
-+~ ¢ ls =%t -2kt 2B I ~ct -ht 2 )
(RS ST IS N T T TS ] 5le € )+ 2B (e e 1~B%c,
Ef (I -vidvi)id(e e "2

L4ttt ) i /a2
D,, = _[V12+V13V32+Vzl +V23V31}(c_+2A)
1) )
2EY 2EY 3

(21 2) . ,{2) 2) (2)  42) -2t - 2h1
_[V11+V‘13V‘32+V(21+V23V‘31]{e “l-e +__2Ba }

ZE(lzl) 251222) (e-m_e—lm)z (e-u_e-h:)
where
2
¢
A=~ _ 4+t
(52) 7 ¢
B- - ,Ze-hn

For A=4Dy,D,; ~(Do; - Dy,)* >0, the general solution of (50) is:

(33)  @,(xy))=A e **1cosbx,+ A, e *25in bx,+ A, e* 1cosbx, + A ¢**Isin bx,

with

D 1/4 d D 1/ ) d -
54) a= -—°9] cos -, b-[—"g] sin~;  d=Arcta A).
‘ [Be]"eos D, "2 reanslye

The coefTicients A, are computed from the boundary conditions (46):
(55) Al-l. Az'a/b‘ A,'A‘.O.
After some algebra, which follows Hashin's {1985] work, we have:

(56) %J. oMo' dV=4D,,cala(a®+b?).
v

Substitute now (56) into (48) and minimize U with respect to K,. Eq. (48) is first
rewritten as:

(57) ZU'[(Kf+2K|0,[l+8DutG}d(az+bz)

where I, and [, are known integrals that can be evaluated numerically. With regard to
the superposition relations (39), minimization of (57) yields the desired value of the stress
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intensity factor as:

88N, cala’~h) -1,
[,-281,+86°D,,cala*+h%)

(58) K,=P

The modified procedure which was followed in evaluation of K, may not identify the
minimum value of U for the seiected admissible field. However. the esumates of K,
which are derived in the sequel are very close to the available exact results.

Some of the comparisons with related results that follow involve plane stress solutions
of crack problems. The plane strain solutions developed so far can be modified for this
purpose. In particular. both 6, components in (45) vanish and that affects the terms in
(48) and (57). The Dyo. D33, and Dy,. in (51) then become:

1 | ¢ (e—zm_,e-znu)
Doo = TRy et ,-Any
Ezz Ezz 2' (e -e )

Il (c* A ¢ r
$9) D,,=— —r—+ AL — e-lm__e-ZIm +2Bi(e " - -'m)+8:
(59 22 E'&'{ZO 3 } {E‘lzl) 2 (e""-e"'")‘}[z ( ) (e € ¢

v(u cZ ClV‘z, e-zm_e-zm 2Bct
Do,= - =i =+2A)-—2 +

E(lll 3 E(lzl) (e-:/l - e-h/n)l (e-tu - e-i/l)

The coefficient D, . and the constraints A and B in (52) remain unchanged. However.
Ting's work indicates that the order of singularity does change.

7. Results and discussion

The technique will now be applied to several cracked laminates which have been
analyzed by other methods in the literature. Of course, we first consider the case when
both layers are made of the same isotropic material. The elastic constants were selected
as E=13GPa, and v=0.3. The ¢/t ratio in Figure | was selected as indicated in Table I.

Taste I. — Stress intensity factors in an isotropic cracked strip of finite width.

clt Kl/ P \/’E Kl cua‘,p V/E Kll Kouﬂ
o........... 1.011543 1.00 1.011543
or.......... 1.011546 1.008S 1.006
02.......... 1.01197 1.02 0.992
05 .......... 1.0401 1.07 0972
A 1.1876 1.1867 1.0007

The table shows the approximate and exact values (Tada et al. 1985] of the plane strain
stress intensity factor K,. The observed error is between | and 3%. For this configuration,
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Fig. 5. - Complementary energy in an 1sotropic cracked stnp.
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Fig. 6. — The stress intensity factor and order of singularity
for a cracked isotropac layer embedded into another sorropic nfinite megtum.

our estimate of the complementary energy U is compared on Figure 5§ with the exact
solution by Sneddon and Srivastav, and Sneddon & Lowengrub [1969]. For comparison,
we also plot the result that follows from Hashin's (1985) model. Note that Hashin's
variational solution for the configuration in Fig. | is a plane stress field (g,, =0). even
though the in-plane dimensions of the plate are much targer than its thickness. The latter
result indicates an unbounded value for U when ¢/t = 0; this serves to confirm our
assertion that a piecewise linear admissible field 6%, is unsuitable in geometries where
t>c. In contrast, the exponentially decaying distribution of the far field in the outer
plies leads to a finite value of U, but if the far field alone is used in the ¢valuation of U,
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Fig. 7. — Evolution of the stress intensity factor:
two isotropic media with various Poisson’s ratio.
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Fig. 8. — Evolution of the stress intensity factor: two orthotropic materals.

the resulting value is about twice as high as the exact one. The addition of the singular
field improves the estimate to an acceptable agreement with the exact solution.

In Figure 6 we show results for a laminate made of two isotropic layers with elastic
constants G, v, and G,, v,. the dimension ¢ - 20. The exact plane strain solution was
found by Ashbaugh (1973) for the case of v, = v, =0.33. The graph shows how the order
of singularity x of the stresses at the crack tip changes with the ratio G,/G,. The order
decreases from 0.5 to about 0.3, and our estimate agrees with the exact solution. The
prediction of the magnitude of K, is within 12% of the exact solution.

A similar comparison is made in Figure 7 with Gupta's (1973) plane strain results.
The results indicate the effect of different Poissoa’s ratios on x and K. A good agreement
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TasLE II. — Companson of approximate and exact results for a composite laminate made of two sotropic
matenals.

W .
X K, P Ky eracs P ¢* N m IN m
i Epoxy - 3= - -
s Aluminum 0.3381 2281 2784 49«10 3 aqp
I Aluminum . - - .
s Steel 04125 1.476 ~ 29x10 28«10
Elasuc constants: E (GPa) v
Expoxy ... . .. 3s 0.3s
Aluminum . . . 68.9 0.3
Steet ... ... 213.7 02
TasLe [II. — Elastic constants for the orthotropic laminates
1 2
Eypo oo 13445 GPa 154.77 GPa
By oo 31.03 GPa 155.83 GPa
Gy o 24.15GPa $9.68 GPa
Vg o 0.65 03

exists between the exact and approximate solutions. Another comparison with Gupta’s
results appears in Table [I. The energy W released by the crack is evaluated for two
matenal combinations. Also, the stress intensity factors found from the present solution
are compared with those computed by Cook & Erdogan [1972] for a two-layer laminate
in which one crack tip touches the interface. In the comparison. a long crack was used
in our solution to eliminate the interaction between the two singular fields.

Finally, Figure 8 indicates how K, varies in laminates made of two different orthotropic
materials. In this example plane stress is assumed and various c¢/¢ ratios are considered.
Table III presents the elastic constants of the layers, those agree with some of those used
by Delale & Erdogan {1979]. In Combination I (Fig. 8) the crack is located in material |:
in Combination II, the materials are exchanged so that the crack resides in a middle
layer made of material 2 indicated in Table III. Delale and Erdogan’s results were found
for a periodic arrangement of layers, with a periodic distribution of collinear cracks.
However, our results were found for the laminate of Figure 1, without any stress
at |x|=h. The agreement is very good for Combination II, but less satisfactory for
Combination 1. This is probably caused by our approximation of the far field. We have
also used the form exp (- gx/¢) instead of that chosen in (44); this improved the agreement
in Combination [ by about 50% when ¢ was selected as ¢=0.6.

In conclusion, the proposed superposition scheme indicates how the available singular
solutions for cracks at interfaces can be utilized in analysis of cracked laminates. Of
course, the singular solutions may be introduced directly into a finite element program.
However, the proposed method is much more efficient. It can be readily extended to the
case of many interacting cracks in a layer [Benveniste er al. 1989).
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s

Moreover, the technique may be modified and applied to laminates made of three
different materials. and aiso to iaminate geometries in which the principal matenal axes
are not aligned.
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ABSTRACT

For che modeling of ply deformacion behavior the orthotropic, thermal
viscoplasticity theory based on overstress is used. It can represent creep,
relaxation and rate sensitivity as well as wmonotonic and cyclic loadings.
The theory i{s “unified" since creep and plasticity are not separately
modeled. No yield surfaces and loading/unloading conditions are employed.
The laminate theory for in-plane loading maintains the geometric assumptions
of classical laminate theory. The elasticity law, however, is replaced by
the thermal, orthotropic viscoplasticity law. Numerical experimentcs
illustrate the predictions of the theory for an angle-ply and a cross-ply
laminate subjected to a temperature Increase, temperature hold and
subsequent return to the original temperature. The ply and laminate
stresses are calculated as a function of time for unconstrained and
constrained conditions using postulated properties close to a real metal
satrix composite. Redistribution of ply stresses and relaxation are tound.
In some cases, nearly permanent residual ply str are pr t after
completion of the temperature cycle.

INTRODUCTION >

Metal matrix composites are increasingly used in prisary structures
vhich are subjected to severs conditions of loading and environment.
Included are variable temperature services such as occur in a satellite in
orbit or during flight of the space plans. Other examples are components in
propulsion systems, jet engines and rocksts. To ensure safe operation,
stress and life-time analyses must be performed long before the part is
buile.

The high degrse of anisotropy present in composite structures requires
the development of nev analysis techniquss which account for the variation
of the material properties with direction. When metal satrix composites are
used, inelastic deformation cannot be ruled out even 1f the service is at
low homologous temperature and if the overall loads are within the nominal
elastic limit [1]. For high homologous temperature service, inelasticity
is found in the form of time-dependent deformation, even in monolythic
materials.

Traditionslly high temperature stress anslysis s perforsed by
combining elasticity with time-indapendent plasticity and creep theories.
For each element, a separate constitutive equation is postulated. Except for
initial conditions, creep and plasticity are treated as separate phencmena
vith no interaction between thea.

With this approach, the exact i{danti{fication in experiments of creep
and plastic strains 1{s problematic, ses [2]. Further, materisl science
shows that dislocations and other changes in the dafect structure are
responsible for 1inelastic deformation which 1: considered to be time
depandsunt. As s consaquence, several new constitutive equations have been
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proposed during’ the last two decades which do not separate creep and
plastic deformation. They are called "unified™ constitutive equations;
recent review of some of these is given in ({3].

The viscoplasticity theory based on overstress (VBO) {s one of the
unified theories. It was developed in response to the observed
time-dependence of enginsering alloys at sabient temperature {4-7}.
Subsequently, an orchotropic version of the theory vas formulated {8,9] and
applied to ths modeling of the in-plane deformation of metal matrix
composite laminates {10].

The purpose of this paper is to {introduce and to apply a thermal
version of the orthotropic VBO to metal matrix composite laminates subjected
to cthermal and mechanical loadings. Nurerical exasples are given for
constrained and unconstrained, angle-ply und cross-ply laminates subjected
to a cesperature increase followved by a temparature hold and subsequent
return to the original teaperaturs. Laminate and ply stress components are
calculated as a function of time in s simple theory which is patterned after
the classical laminate theory (CLT), see [11]. The geometric assumptions of
CLT are maintained such as constant strain through the laminate and
satisfaction of the stress boundary condition for the whole laminate only.
The linear orthotropic elasticity law of CLT is, however, replaced by the
thermal, orthotropic viscoplasticity theory based on overstress. It is nov
possible to model hysteresis, creep, relaxation and rate sensitivity as well
as time dependent stress redistributions between pliss due to thermal aud/or
mechanical loadings. The present theory assumas the ply to bs an
orthotropic continuus with its properties represanted by the thermal VBO. No
interactions betwaen fiber and matrix are nodeled. However, this can
be done without any difficulty and will be pursusd in the future.

PLY CONSTITUTIVE DQUATIONS

An  orthotropic version of the viscoplasticity theory based on
overstress (VBO) {s used. In this theory, the total small strain rate is
the sum of the elastic, inelastic and thermal strain rates. For the elastic
strain rates, the rate form of Hooke’s law in orthotropic form is esployed
, 1.0, the time derivative of the product of the orthotropic compliance with
the stress. The {nelastic strain rats {s only & function of overstress,
which 1s the difference between the current stress and the equilibrium
stress, the state variable of the theory. The equilibrium stress is the
stress which can be indefinitely sustained after dsformation vhen all rates
have returned to zero. Initially, the equilibrium stresz 1is zero but
evolves with deformation according to a separstely postulated orthotropic
growth lawv. It {s responsible for modsling alwost linear elastic regions
and hysteresis. In the present theory, no recovery terms are included. An
extension of the theory to recovery is under development. The thermal strain
rate is the time derivative of the product of the orthotropic coefficient of
thermal expansion with the temparature difference reckoned from a reference
teaperature. All msterisl properties of the theory can be functions of
temperature and sust be determined from suitable sxperiments oa a ply. This
includes tests in the fiber and transverse directions. Rate change tests
are essential in datermining the vi (tims-dependent) propertiss of the
theory.

The VBO assumes that inslastic deformation is basically rate dependant.
Rate dapendence 1is alwvays present and can changs with temperaturs.
Normally, it increeses with rising temperature. This property can be
aodsled by making certain constants in the repository for rate dapendence a
function of temperaturs. The normally encountered decrease in the flow
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stress wich increasing temperature is also modeled easily. In fact, since no
trend of the teaperature dependence is presumed by the theory, even
anoaalous trends such as an increase in strength with increasing temperature
can be represented by this VBO.

The theory does not use a yield surface and loading/unloading
conditions. Inelastic strain races are alvays present but are extremely
soall {n the elastic regions. On a stress-strain graph, the linear
elastic region predicted by the theory can be a perfect straight line. This
is accomplished by the growth law for the equilibrium stress.

The equations of the theory need detailed explanations which cannot be
included in this paper because of space limitations. The theory is
presented in (12].

IN-PLANE LAMINATE BEHAVIOR

The orthotropic VBO described above is nov specialized for the case of
plane stress and used as a constitutive equation for a particular ply in a

simple theory of in-plane laaminate behavior. The theory retains all the
geometric assumptions of CLT, see {L1i]. In this paper, the
orthotropic, linear elasticity lawv used {n CLT {s replaced by the thermal,
orthotropic VBO. As a conseq e, rate depend , creep, relaxation and

hysteresis can be modeled, in addition to the effects of changing
temperature. The theory includes the aodeling of stress rediscribucions
between plies during deformation.

This theory has been developed for angle-ply laminates and a computer
program has been written for the numerical integration of the resulting
simultaneous nonlinear, ordinary differential equat! ‘ons, see [12] Once the
naterial constants and functions of the theory are known, the progras can
bs used for any thersal and/or mechanical history imposed on the laminate.
Included are uniform temperature changes for a constrained or an
unconstrained laainate, as well as simultaneocus thermal and mechanical
loadings.

For the sake of brevity, these cquations are not give- here. They can
be found in [13].

NUMERICAL SIMULATION OF LAMINATE BEHAVIOR UNDER A TEMPERATURE CHANGE

To 1illustrate some aspects of the capsbility of the cheory without
listing the governing equations, the folloving procedure is adopted.
Hypothetical but realistic material properties ara assumad in the thernmal,
orthotropic VBO. These properties result in a certain stress-strain behavior
in the fiber and in the transverse directions. These diagrams are taken to
be an indication of ths materisl properties of each ply. Then a
[+65/-45] angle-ply and a ([0/90] cross-ply laminate are “builc
thoornttc‘lly' and their responses to a temperaturs hiscory with and
vithout mechanical constraints are computed. The uniform tegperature
excursion (every part of the laminate sees the same temperaturs) 1is a 200°C
increase followed by a temperature hold and a subsequent decrease to the
referance temperature as depicted in Fig.la. In the firsc case, the
laninates are free to expand and only thermal stresses betwveen the plies
develop dus to the differences in the orientation and the coefficients of
thermal expansion. The laminate boundaries are stress free. In the second
case, the laminates are constrained in the one-dirsction but are frae to
expand in the two-direction, see Fig.lb. Thermal stresses are nov dus to




conscraint and dus .o the differences in orientation of the plies. This
exercise 1is to demonstrac=: :th: cspabilities of the cheory under saall
temperature changes. ©f course, larger temperature changes can De
simulated, as long as the nmaterial daca sre known. Examples are the
computation of the residual stresses that mav develop during manufacturing
when the laminate cools down from the working temp.rature.

The stress-strain diagrams of a ply in the fiber and the transverse
directions at the referencs temperature and at the maxisum temperature of
the cycle are shown in Figs. 2a and 2b, respectively. The difference in the
strengths of the matrix and the fibers is obvious as is the increased rate
sensicivity of the matrix as compared to the fibers. Overall., the rate
sensitivity modeled by this hypothetical material {s not very pronounced.
Other stress-strain relations and rate sersicivities can be modeled easily
by adjusting the material constants, see (10].

For the simulation of the temperature cycles imposed on the laminate,
it {s assumed that the positive ccefficient of thermal expansion in the
fiber direction is about one sixtieth of that of the transverse direction.
Such relations are found in some metal matrix plies.

Case 1: Unconstrained Laminates

In cthis case, no external stresses sct on the laminate. Owing to the
assusptions of CLT, stresses can act at the boundary of individual lasina as
long as their sum is zero.

Fig. 3 shows the computed results for both the angle-ply and the
cross-ply laminates. Owing to the small temperature change, the stresses
are sodsst and are within the elastic dchavior of the fibers., see Fig. 2a.
Due to symmetry. only ply shear s .asses exist in the [+45/-45]_ laminals.
The stresses i{n the two plies have opposite signs. In the cross-ply
laminate, no shear strasses are found and the ply stresses in the one- and
the two-directions are equal. Equilibrium requires that the stresses in the
zero and ninety dsgres ply add up to zero. For these reasons, only one
curve 1is show in Fig. 3. It {is seen that relaxation occurs during the
temperature hold and thst residual stresses exist when the tesperature
returns to its original value. They decrease slightly in magnitude with
time.

Case 2: Constrained Laminates

Dus to the constraint, see Fig. 1lb, laminacte stresses exist in che
one-direction. In the twvo-direction, the laminate stresses are zero.

The results for the angle-ply laminate are depictsd in Fig. 4.
Compsred to Fig. 3, compressive stresses In the one-direction develop
upon heating which sre almost zero vhen the Ctemperature aexcursion is
finished. Dua to symmetry, the ply stresses in the one-direction are equal
to each other and squal to the laminste stress. Shear ply stresses develop
also 1in the constrained case and their magnitude is smaller thsn {n Fig. 3
dus to the presence of the normal stresses and the nonlinearicy of the
~heory. At first glance, it is surprising that the shesr stress sagnitude
is higher then the stress in the one-direction due to constraint. This
outcome is largely dus to the coefficients of thermal expansi-n chosen in
this case. As mentioned above, the coefficlent of thermal expansion is
sixty tises higher in the two-direction than in the one-direction.
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The variation of the stress components vith time is plotted in Fig. 5
for the cross-ply laminate. The shapes of the curves are very similsr to
each other and to those of Figs. 3 and 4. It {s clearly seen that the
laminate stress in the one-direction is the sum of the corresponding ply
stresses. Due to the differences in the coefficient of thermal sxpansion,
the stress in the one-direction of the 90-degres ply is higher than the
stress in the one-direction of the zero-degree ply. For the same reason,
the stress in the one-direction of the 90-degree ply is a lictle higher than
the stress in the two-direction of the zero-degree ply in the elastic
region. When inelasticity sets in, this trend {is reversed. After the
temperature excursion is over, tensile stresses are present in the laminate
which, on the graph, do not appear to relax with time. A check of the
numerical data, howsver, reveals a slight decrease in time.

DISCUSSION

The sbove examples have shown that the theory can model simple cases of
thermal stresses in laminates. This includes relaxation and the development
of residual stresses. The theory predicts smooth variation of the stresses
with temperature history. (The ragged appearance of some of the curves is
due to the PC graphics package employed in aaking the figures.)

This paper uses filctitious materisl properties to illustrate, in
principle, the capability of the theory on some simple examples. For a
practical application, the material functions and constants of the theory
must be determined by suitable experiments as a function of temperature, see
[4,5]. 1In addition, off-angle tests are necessary, see [10], where some
of the pertinent literature 1is cited. The theory has many flexibilities,
such as almost linear elastic behavior in the fiber direction buc
viscoplastic behavior transverse to it. However, the major question is,
what are the ainimum nuamber of constants and functions nacessary to model s
given behavior? This aspect has been considered in (9,10}. There, a
*minimal® theory for isothermal deformation is shown which can reproduce the
behavior of Borsic/Al metal matrix composites. Similar studies wust be
performed with the present thermal VB0 and additional experience must be
gained through further theoretical and experimental research.

The geometric limitations of CLT carry over to the present theory.
From Figs. 3-5, it {s seen that the ply stresses at free edges are not
alwvays zero, only the lasinate stresses sust vanish cthers. These ply
stresses can be rather large. In Case 2, they are higher than the stresses
caused by the constraint. When different sets of thermal expansion
coefficients are used, this trend can be altersd and the constraint stress
magnitude can become the largest. This has been verified by separate
computations.

The small temperature excursion and the small coefficient of thermal
expsnsion 1in the fiber direction are responsible for the small thermsl
stresses found in the laminste. They are within the elastic region of the
stress-strain disgram in the fiber direction. The redistribution of the
stresses vwith time {s thought to be dus to the chosen “soft® matrix
properties. By selecting different "viscous® properties in the material
model, the redistributions can be enhanced or retardsd. These properties
will have to be explored by future nuserical experiments.

This research was supported by DARPA/ONR Contract N 00014-86-K0700 to
Rensselasr Polytechnic Institute.
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Residual Stresses in Fibrous Metal Matrix
Composites: A Thermoviscoplastic Analysis

Erhard Krempl and Nan—Ming Yeh
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Troy, N. Y. 12180-3590

ABSTRACT
The vanshing fiber diameter model together with the thermo-
viscoplasticity theory based on overstress are used to analyze
the thermomechanical rate (time)—dependent behavior of
unidirectional fibrous metal-matrix composites. For the
present analysis the fibers are assumed to be transversely
isotropic thermoelastic and the matrix constitutive equation is
isotropic thermoviscoplastic.  All material functions and
constants can depend on current temperature. Yield surfaces
and loading/unloading conditions are not used in the theory in
which the inelastic strain rate is solely a function of the
overstress, the difference between stress and the equilibrium
stress, a state variable of the theory. Assumed but realistic
material elastic and viscoplastic properties as a function of
temperature which are close to Gr/Al and B/Al composites
permit the computation of residual stresses arising during cool
down from the fabrication. These residual stresses influence
the subsequent mechanical behavior in fiber and transverse
directions. @ Due to the viscoplasticity of the matrix
time—dependent effects such as creep and change of residual
stresses with time are depicted. For Gr/Al residual stresses
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are affecting the free thermal expansion behavior of the
composite under temperature cycling. The computational
results agree qualitatively with scarce experimental results.

INTRODUCTION

Metal matrix composites consist of a ductile, usually low
strength matrix reinforced with elastic, brittle and strong
fibers. Ideally, the strength of the fiber and the ductility of the
matrix combine to provide a new material with superior
properties. Selecting the best combinations of fiber and matrix
materials is a difficult task which involves conflicting demands
and many compromises. To prevent self stresses from
developing during cool down from the manufacturing
temperature it is desirable to have the same coefficient of
thermal expansion for fiber and matrix. This ideal, however, is
seldom achieved as other considerations but the coefficient of
thermal expansion have priority in selecting the constituent
materials.

It is known that the residual stresses have an influence on the
mechanical behavior, Cheskis and Heckel [1970], Dvorak and
Rao (1976}, Min and Crossman [1982]. Moreover, the thermal
expansion behavior of metal matrix composites is shown to be
influenced by the residual stresses, Garmong [1973], Kural and
Min [1984] and Tompkins and Dries [1988). In precision
applications the exact thermal expansion behavior is of great
interest as it influences the performance.

It is the purpose of this paper to provide a comparatively
simple and approximate means of calculatiag the residual
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stresses in a unidirectional metal matrix composite during cool
down from the manufacturing temperature and to assess their
influence on subsequent mechanical behavior as well as on the
thermal expansion of the composite under uniform temperature
changes. To accomplish this task the vanishing fiber diameter
model of Dvorak and Bahei~El-Din [1982] is combined with
the thermoviscoplasticity theory based on overstress (TVBO)
of Lee and Krempl [1990]. TVBO is a "unified" theory which
does not separately postulate constitutive laws for creep and
plasticity but models all inelastic deformation as rate
dependent. Experiments with modern servocontrolled testing
machines have shown rate dependence even at room
temperature for engineering alloys, e.g stainless steels, Krempl
[1979], 6061-T6 Al alloy, Krempl and Lu [1983], and Titanium
alloys, Kujawski and Krempl [1981]. The transition from low
to high homologous temperature behavior is usually
characterized by a decrease in strength and an increase in rate
dependence with an increase in temperature. This behavior
can be modeled easily by TVBO by making certain constants
depend on temperature. It is not necessary to postulate
different laws in different temperature regimes.

First the governing equations are stated. They are represented
by a system of first order, nonlinear, coupled differential
equations which must be solved for a given boundary condition
and loading/temperature history. Base data for 6061-T6 Al
alloy for which viscoplastic material properties were
determined by Yao and Krempl [1985]. Plausible changes of
these properties with temperature were postulated and the
system of differential equations was integrated to depict the
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properties of the model. Of special interest is the influence of
the residual stresses set up during cooling from the
manufacturing temperature of 660 °C. Owing to the
viscoplastic nature of the matrix constitutive model the
residual stresses redistribute while the composite is at ambient
temperature. For the material properties chosen in the
numerical experiment this redistribution slows down rapidly
with time at ambient temperature and after 30 days a nearly
constant residual stress state is reached. Since the subsequent
response of the composite is affected by the residual stresses an
influence of time spent at room temperature on the subsequent
behavior is predicted by this analysis. The influence of
residual stresses on the subsequent isothermal mechanical
behavior and on the thermal expansion behavior of a composite
subjected to thermal cycling is investigated by numerical
experiments. The computations agree qualitatively with scarce
experimental results reported by others.

THE COMPOSITE MODEL. THERMOVISCOPLASTICITY
THEORY BASED ON OVERSTRESS (TVBO)
AND THE VANISHING FIBER DIAMETER MODEL (VFD)

For the representation of the equations, the usual vector
notation for the stress temsor components ¢ and the small
strain tensor components € are used. Boldface capital letters
denote 6x6 matrices.

Stresses and strains without a superscript designate quantities
imposed on the composite as a whole. Superscripts f and ®
denote fiber and matrix, respectively. The fiber volume
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fraction is ¢f and c® denotes the matrix volume fraction with ¢f
+c®=1.

A unidirectional fibrous composite element is assumed where
the fiber is transversely isotropic thermoelastic, the matrix is
isotropic and thermoviscoplastic and represented by TVBO.
Fiber orientation in the 3—direction is postulated.

For the VFD model, Dvorak and Bahei-El-Din [1982], the
following constraint equations hold

g = ol = % fori+3
o3 =cf£7§+c"a‘!

g =cfef+c® e for i3
&gy = & = €

When they are combined with the TVBO equations by Lee and
Krempl [1990] the composite is characterized by the following
set of equations: (details can be found in Yeh and Krempl
[1990))

¢ =Tla + (K*)'X" + (Rf)'of + (R*)'0® + @T
(1)

together with a separate growth law for the 0% component of
the matrix
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In addition growth laws for the two state variables of TVBO,
the matrix equilibrium stress g* and the kinematic stress f*,
are given as

g = ron + T 25 om 4 {qrire) - v -

o]} 3
"= P~ x» (4)
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with
(F®)? = (X®)H(X")
()2 = —(Z*)*H(2")

(A")?
Xt=o-g"
7 g (5)

In the above C! is the symmetric overall compliance matrix
whose components are functions of the elastic properties of
fiber and matrix. The viscosity matrix (K®)™! is not symmetric
and its components together with those of C! are listed in
Appendix I. The matrices (Rf)"! and (R")*! contain time
derivatives of the elastic constants of the fiber and the matrix,
respectively. Both matrices are not symmetric.  Their
components are listed in Appendix I. These matrices represent
the "additional" terms which can play a significant role in
modeling thermomechanical behavior, see [Lee and Krempl
1990a). The viscosity function k®*[I'®] and the dimensionless -
shape function q®[I'®] are decreasing (q®[0] < 1 is required) and
control the rate dependence and the snape of the stress—strain
diagram, respectively. (Square brackets following a symbol
denote "function of".) The quantity p" represents the ratio of
the tangent modulus E? at the maximum inelastic strain of
interest to the viscosity factor K™ It sets the slope of
stress—inelastic strain diagram at the maximum strain of
interest. [E,, L, @ together with the components of the
dimensionless matrix H and other material properties are
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defined in Appendix I. An explanation of TVBO is given by
Lee and Krempl [1990] and the derivation of the above
equations can be found in Yeh and Krempl [1990).

Eq. (1) shows that the overall strain rate is the sum of the
overall elastic strain rate, the inelastic strain rate of the matrix
and the overall thermal strain rate in the case of constanmt
elastic properties. If temperature dependent elastic properties
are assumed then two additional terms contribute to the
overall strain rate. They insure that the elastic behavior is
path independent, see Lee and Krempl {1990, 1990a].

Eq. (2) is used to calculate the instantaneou: axial matrix
stress which can not be obtained from the overall boundary
conditions directly. o% is affected by mechanical and thermal
loadings and their loading paths. For instance for the
isothermal case when T = 0, matrix stresses in the fiber
direction (0%, g%, f1) can evolve in unidirectional transverse
loading, or may evolve in unidirectional shear loading provided
the initial value of X% is nonzero. For pure thermal loading
(overall stresses are zero), o% together with g%, f3 will develop
due to the difference in the coefficients of thermal expansion of
fiber and matrix; these matrix stresses in the fiber direction
cause coupling between the mechanical and thermal loading in
the inelastic range.

NUMERICAL SIMULATION

Egs. (1) — (5) constitute the model which must now be
applied. The boundary conditions must be specified in
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addition to the uniform temperature history. Also material
properties must be known as a function of temperature. For
the purposes of this paper two metal matrix systems, Gr/Al
and B/Al are simulated. The matrix viscoplastic properties for
6061-T6 Al alloy are known at room temperature from
experiments reported by Yao and Krempl [1985). Since no
experiments were available at other temperatures a plausible
temperature dependence was postulated. The elastic properties
and the coefficient of thermal expansion for the Gr and B
fibers are listed in Table 1. They are assumed to be
independent of temperature for simplicity. = The matrix
properties which are close to 6061-T6 Al alloy are listed in
Table 2. They yield the matrix stress—strain diagrams at a
strain rate of 10°* s! depicted in Fig. 1. A decrease in
modulus, flow stress and the asymptotic tangent modulus with
increasing temperature is modeled.

P — . _
| ] T
J
5 IS
& _____ - ———
% S — 4
b V.
A
£ a |
@\ £=10"1/s !
Y . T R 1
0.0 PY; L L J
Stiain € (%)
Fig. 1. Stress—strain diagrams of matriz material at

various temperatures.
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Table 1.

Elastic Properties for Boron and Graphite Fibers

Properties B Gr (****)
Ef; (MPa) 413400 *) 689650
vh, 0.21 (*) 0.41

Gis (MPa) 170830 (**) 15517

af (m/m/°C) 6.3E—6 (***) -1.62E-6
Ef, (MPa) 413400 *) 6069

Gls (MPa) 170830  (*¥) 2069

of (m/m/°C) 6.3E~6 (***) 1.08E-5

* Kreider and Prewo [1974]
** Estimate

*¥** Tsirlin {1985]

¥*** Wy, et al [1989)
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Table 2.
Thermoelastic and Thermoviscoplastic Properties
of the Matrix

E® = 74657[1 - (g5)°] (MPa) (*)
VA = 0.33 (**)
G® = 28066[1 — (g%)q (MPa) (*)
o® = 2.35E-5 + 2.476E—8(T — 273) (m/m/°C) (**)
q"[l'™) = ¥*[I"*]/E", p* = E}/K"
Viscosity function k*[[%] = ky(1+ ——) ¥
k; = 314200 (s), ks = 71.38 (MPa) (***)
ks = 53 — 0.05(T—273) (**)(***)
Viscosity Factor K® = E®
E? = 6191 — (53)"] (MPa) (**)
A® = 72.24[1 ~ (3)"] (MPa) (**)
Shape function ¥*[I'"] = ¢, + (cy—c )exp(—cs'®)
¢1 = 16511[1 — (5g)°] (MPa) (**)
¢2 = 73910[1 — (53)"] (MPa) (**)

c3 = 8.43E-2 + 1.06E—4(T—-273) + 1.914E—6(T-273)?

+5.304E-9(T-273)3 (MPa™!) **
Inelastic Poisson’s Ratio: 0.5
T =°K, 153°K < T < 933°K

(*) Estimate. Temperature dependence due to Hillig [1985]
(**) Estimate
(***) Yao and Krempl [1985]
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For the integration of the coupled set of differential equations
the IMSL routine DGEAR is used. '

Residual Stresses upon Cool-Down from Manufacturing
Temperature

Overall stresses are assumed to be zero and the temperature is
decreased at a constant rate of 0.033 °C/s. It is assumed that
the composite is stress free at 660 °C and that perfect bonding
starts at that temperature. Since the coefficient of thermal
expansion is larger for the matrix than for the fibers tensile
matrix stresses develop as shown in Fig. 2a for B/Al and in
Fig. 2b for Gr/Al. Owing to the assumed fiber volume fraction

150 S AR IS IS IS IS I I I
- B/Al
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Fig. 2a. Development of matriz stress o%, matriz equi—

librium g% and kinematic stress f8 during cool down

from manufacturing temperature. The inset shows

the decrease of the overstress during the room

temperature hold 1 — 2. Boron/ Aluminum.
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Fig. 2b. Same as Fig. 2a ezcept that material is Graphite/
Aluminum. The fiber stress of is also shown.

of 0.5 the fiber stresses are equal and opposite in Fig. 2b. They
are not shown in Fig. 2a where the fiber volume fraction is
0.1. The VFD assumption listed previously yields of = —903%.
At point 1 room temperature is reached. Due to the
viscoplastic nature of the matrix the stresses relax to point 2
with time. The inset shows the overstress 0% — g9, which
"drives" the inelastic deformation, rapidly decreasing with
time. All residual stresses enter as initial conditions for
simulations of subsequent tests. They can affect the modeled
behavior and therefore time appears to influence it. After 30
days the residual stress state is nearly constant. Then the
model predicts that the subsequent response becomes
independent of the rest time at room temperature. On the
scale of this graph the kinematic variable f§ does not appear to
change with time. However, the digital output confirms the
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slight increase predicted by Eq (4).

Influence of Residnal Stresses on Room Temperature
Mechanical Behavior

In this case a B/Al composite with ¢! = 0.1 is considered and
uniaxial tensile tests in the fiber and the transverse directions
are performed at a strain rate of 10 s°!. When a strain of
0.5% is reached the overall stress is kept coastant to allow
creep deformation to evolve during a short period of 300 s.

Fig. 3 shows the mechanical behavior for tests in the fiber (3) —
direction. The overall stress, the matrix stress and equilibrium
stress are plotted vs. overall strain for 3 cases. Fig. 3a shows
the behavior without residual stresses, Fig. 3b has the residual
stress state at point 1 in Fig. 2 as initial conditions. This is
called Case 1 and simulates a tensile test performed
immediately after the composite reached room temperature.
The relaxed residual state of stress represented by point 2 in
Fig. 2 forms the set of initial condition for Case 2. The
mechanical behavior with this set of initial conditions is given
in Fig. 3c.

By comparing the figures the significant influence of residual
stresses on the overall stress—strain diagram can be clearly
ascertained. It can be seen that the initial slope, the stress
level at which the transition to another slope takes place and
the overall appearance of the composite stress—strain diagram
are significantly affected by the residual stresses. Owing to a
nearly zero overstress in Case 2 the initial slope seems to be
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Fig. 3c. Same as Fig. Sa for Case 2.

identical to the stress—strain diagram with no residual stresses.
The level of the overall stress is considerably lower for Case 2
than for the case without residual stresses. Since it is unlikely
that a tensile test will be performed right after reaching room
temperature and since the overstress decreases rapidly with
time, see inset in Fig.2, an experiment would yield the results
of Case 2. The residual stress state has an influence on the
relation between the strain in the fiber direction and the
transverse strain as shown in Fig. 4. From these curves the
actual Poisson’s ratio based on total strain could be calculated.
The simulation of a tensile test in the transverse direction is
shown in Fig. 5a and the relation between the transverse strain
€, and the two perpendicular strains ¢; and ¢y are shown in
Fig. 5b and Fig. 5c, respectively. A significant influence of the
residual stress state is evident, especially in Figs. 5a and 5b.
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In Figs. 3 through 5 the behavior during the 300 s creep period
is specially marked. As expected the total creep strain
accumulated is very signmificant in the matrix dominated
transverse mode, see Fig. 5a. It is small for the fiber direction
as shown in Figs. 3. In each case primary creep is modeled
with a rapidly decreasing rate. This is shown in Fig. 5d for the
transverse case. This corresponds to the so—called "cold creep"
phenomenon found at room temperature for ductile engineering
alloys. For the strain vs. strain curves , Figs. 4, 5b and 5¢, the
creep periods do not differ significantly from the periods under
increasing stress. Only a slight break in slope is noticeable at
the outset of the creep period.
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Fig. 5d. Transverse creep strain during the S00s creep

period.
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The Influence of Residual Stresses on the Thermal Cycling
Behavior of Gr/Al Composite.

The thermal cycling behavior of Gr/Al is of special interest
due to the negative axial CTE of Graphite, see Table 1. It
gives rise to some unusual expansion behavior, see Wu et al
{1989] and Tompkins and Dries [1988]. In this paper we
simulate that the composite is free to expand (overall stresses
are zero) and is subjected to a temperature cycle starting from
room temperature to + 120 °C at a rate of 0.033 °C/s.

The resulting strain in the fiber direction — temperature
hysteresis loop is depicted in Fig. 6a. It is seen that the
composite expands on the segment 0—1 but then contracts with
increasing temperature, segment 1-2. Upon decrease of
temperature from 120°C the composite shrinks as expected but

0.03 — T T T T ey
NoR.S.
<) s Gr/Al
§ 002 cl___os 'q
v - .
< i T=0033C/s ]
g 001 |- >
7] [ ]
E 4]
o o 5 -
> 001 |- ~
o i :
NPT BN T SR RS BT
'om-lso -100 -50 0 50 100 150
Temperature (°C)
Fig. 6a. Temperature—strain in the fiber direction loop

during temperature cycling of Gr/ Al composite.
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expands at point 3 although the temperature continues to
decrease. This pattern continues in the subsequent reversals.
At point 4 a 600 s temperature hold is introduced and the
strain decreases by a small amount, the composite "creeps"
under zero external load and the creep curve is shown in Fig.
6b. To demonstrate that the temperature rate has an influence
the calculation was repeated with a rate of 0.1 °C/s. There is
very little influence on the temperature/strain curve, but creep
during the temperature hold period is accelerated as shown in
Fig. 6b.

%
—~ 00 gy ————— ————t
)
e
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05 - | =
8
m “\,'_
" .
5 Gyl
_ T, e -
O 1o Gos I
= T=120¢ e e ]
s o T T ]
> 4
O s | | N I L
| 100 200 300 400 500 600
Time (s)
Fig. 6b Creep curves during temperature hold at 120° C,

see points 4, 5 in Fig. 6a.

The explanation of this unusual behavior can be found in the
development of the fiber and matrix s.resses during cycling as
shown in Fig. 6¢c. It is seen that a temperature—stress
hysteresis loop develops and that the matrix starts yielding at
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points 1 and 3 where the breaks in Fig. 6a occur. The unusual
behavior is due to the matrix y.~lding. In the inelastic range
the stiffness of the matrix is low and the overall behavior is
dominated by the fiber which has a negative axial CTE.

To show the influence of residual stresses Cases 1 and 2 are
simulated in Fig. 7a. and Fig. 7b, respectively. Cooling down
takes place on 0—1. While the composite rests free of overall
stresses at room temperature, see Fig. 2b, the overall strain
increases on path 1-2, see Fig. 7b (this portion is absent in
Fig. 7a which depicts Case 1). At 2 temperature cycling
begins, the composite expands first, 2-3, but starts to shrink,
3—4 and then the pattern of Fig. 6a continues. However, this
time the first part of the first cycle 2-5 is not inside the
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subsequent loop as it was the case for Fig. 6a, see segment 0-3.
Rather the first segment is shifted and the shift depends on the
case considered. The residual matrix and fiber stresses have
altered the cycle pattern. Their development during cycling
(the cool-down portion 0-2 is omitted ) is depicted in Fig. 7c
for Case 2. For the identification the same numbering scheme
has been used as in Fig. 7a and in Fig. 7b. It can again be
ascertained that the "breaks" in the expansion behavior are
coinciding with the onmset of inelastic deformation of the
matrix.
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Fig. Tc. The ‘"interngl stresses" developed during
temperature cycling for Case 2. Curves start at
room temperature, posnt 2 in Fig. 7.
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DISCUSSION

A "unified" viscoplastic constitutive model for composite
analysis, the thermoviscoplasticity theory based on overstress,
was used in conjunction with the vanishing fiber diameter
model in a simple analysis of the influence of fiber/matrix
residual stresses on the mechanical and thermal cycling
behavior. Realistic but assumed material properties permitted
the execution of numerical experiments. The stress—strain
diagrams reported in Figs. 3a—3c correspond qualitatively with
those reported by Cheskis and Heckel [1970]. In both cases a
break in the slope of the overall stress—strain diagram is
observed when the matrix starts to deform inelastically in an
appreciable manner. The presence of residual stresses shift the
location of this break point, see Figs. 3a—3b.

Another feature exhibited by the present theory is the
manifestation of the influence of rate dependence on the
behavior. The first example was the redistribution of the
residual stresses while the composite element was sitting stress
free at room temperature after cool-down from manufacturing
temperature. The theory predicts that this redistribution will
nearly come to an end after some time which depends on
material constants, especially the viscosity function used. In
the present application the redistribution is almost finished
after 30 days. While the stresses redistribute the time at room
temperature appears to have an influence on the subsequent
behavior.
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For Gr/Al the residual stresses were shown to affect the free
thermal expansion of the composite. The results of Figs. 7a
and 7b suggest that residual stresses are responsible for the
special shape of the first part of the first cycle of Figs. 6 and 7
of Tompkins and Dries [1988]. In comparing their figures with
Figs. 7a and 7b it has to be kept in mind that the presently
used theory models only cyclic neutral behavior whereas real
matrix alloys may exhibit cyclic hardening or softening. These
aspects could be added to the present theory in a refined
approach.

The present paper intends to show the capabilities in principle.
For the exact modeling of a metal matrix composite various
refinements are possible. Included are the determination of
matrix and fiber properties as a function of temperature and
the use of other micromechanical models.
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APPENDIX I ,
For the transversely isotropic (fiber) and the isotropic (matrix)
elastic properties the usual designations are employed. For
convenience the following quantities are defined and used

Ei = CfE§3 + c"E"
L = /;E" - Ef;
vy = Cfllsl + cMA.

The components of the overall elastic compliance matrix Tt
are
f (] f.ar 2
CY, =S4 &8 _cc'l? _ pu
(©u Ef;, E* ELE"Ey (€n
Ty = cfﬂz.‘.. CIV-,r (:f(:.L2 = (T )
(€= Ef, E® E§aE'Ess) €
CHhs = ——;ﬂ = (T3 = (T3 = (T2
33
(U-l),s 3 _1
33
=Ll Lt o
(c )“—G ‘+G'—(C )55

C‘l = c—f- C_.
(Ces s + -

with all other (T)y; = 0.

The viscosity matrix (K®)! is given by the components (the
argument of the viscosity function k® is omitted)
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(K*)it = —-(1 +0. 55—) = (K")3}

33

K" = —* C L a
(K%)id = pen U E,,) =(K")il

(K" = ———(o 54 £ E -(K')d

(K™l =

E,,K'k' — =(K")i}

K. = IEI
(K%)at EjK2k®

= (K")il = (K")st.

(K®)él =

KI

All other (K®)j} = 0.
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The components of the "extra terms" (Rf)* and (R®) are

' i)l = (B __cfelL (V5 .Efs — i B
(RY)il _((Efl)’ (E§3)’E;;§ s — viEfy)

= (R34
afvg o _ [ jent g cferL
(R)id = [(_EW(V{ZEL AaEf) + _(E () En

(AE - )| = (Rl

(R = —;Lmﬂs, — Es) = (RN}

(RD31 = =S (AT — WiESS) = (RD)3)

E{;E;s .
(Rf)3f = - ;—;’:—é::
(RNl = -cf(%‘f)—, = (A3t
(Rsh = 4(%&?

with all other (Rf)} = 0.
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L 3T . E® clerL (i"E® — ,AE®) = (R%);
(R®)il -c(E')’+(E')’E'3;\ E E®) = (R")3 .

(Ro)if = Sa(mpm - mEm)(1 - £1) = (R
(E"y? E

(R")il = E%é—;(;azﬁ' - i*Ey) = (R")3d

LT P JAE® _ AE®) = (R®);
(R%); -1-‘3_'%_3;( E ) = (R%)3

Bl = — cPE®
(R™)s4 —

(R*)il = -c(?)-, =(R")il = (R™)s4

All other (R")j} = 0.

The overall coefficient of thermal expansion vector a is
represented by

(@)1 = cfef + C'a'-%c.—l‘{d'-a‘) = (3)
3

(@)s = (c'afEf; + c"a®E")/Es;
(@)« = (a)s = (a)s = 0.

Finally
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Eur. J. Mech., A/Solids, 10, n* 2. 173-192, 1991

Uniaxial thermomechanical loading. Numerical experiments
using the thermal viscoplasticity theory based on overstress

K. D. LEE ** and E. KREMPL *

ABSTRACT. — A previously formulated orthotropic thermal viscoplasticity theory based on overstress
(OTVBO) is specialized for the uniaxial state of stress (TVBO). In this theory the assumption of path
independence of elastic behavior leads to additional terms which are multiplied by the time rate of change of
temperature. The influence of these terms is investigated by numerical experiments on three different hypothetical
materials which exhibit different temperature dependence of mechanical properties which are patterned after’
real matenals.

The additional terms assure 3 stiff response and show their influence on the “clastic” behavior as expected
as well as on the transition to inelastic flow. The long term asymptotic behavior at constant mechanical strain
rate and ultimately constant temperature is, however, unaffected. The magnitude of the influence of these
terms is controlled by the temperature dependence of the constants with a dominant effect of the elastic
modulus. A definition of ‘temperature history effect’ is given. Its absence implies that the material properties
can be determined from isothermal tests at various temperatures alone. If the asymptotic tangent modulus is
zero (the stress-strain curves are horizontal at the maximum straib of interest), then TVBO cannot represent a
‘temperature history effect’.

Introduction

The analysis of the inelastic deformation behavior is an important ingredient in the
life prediction of components subjected to severe mechanical loading and thermal cycling.
Presently the life of components in gas and steam turbines, processing plants, nuclear
reactors, and jet and rocket engines must frequently be determined long before the
component is being built. Inelastic finite element analyses calculate the state of stress
(strain) as a function of location and time in a component. The stresses and strains are
then used as inputs for the life prediction.

In the finite element analysis constitutive equations are needed which describe the
deformation behavior of the material to be analyzed under constant and variable temper-
ature. Modern constitutive equations based on state variables with no separate repositor-
ies for creep and plasticity, the so-called unified theories, are increasingly used. In these
theories the equivalents of the classical kinematic and isotropic hardening variables
are employed frequently. They have been successful in describing inelastic isothermal

* Mechanics of Materials Laboratory, Rensselaer Polytechnic Institute, Troy, N.Y. 12180-3590, U.S.A.
*¢ Now with Lucky LTD, Dae-deog Danji, Des-jeon, Korea.

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. voL. 10, N 2, 1991
0997-7538/91/02 173 20/$ 4.00/ © Gauthier-Villars
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Chan & Lindholm [1990] and by Niitsu & Ikegami [1988]), although the latter results
could be interpreted to contain some temperature history effect, especially when the
additional results which are quoted by Ohno er al. [1988)] are taken into consideration.
A clear case of a temperature history effect and associated microstructural changes in a
IN 100 superalloy is reported by Cailletaud & Chaboche [1979].

Although the origin of any temperature history effect may be due to chemical reactions
of the microstructure (precipitation reaction such as carbide formation is just one
example) it can be identified macroscopically by suitable experiments. Two identical
specimens with different prior thermomechanical histories are subjected to the same
loading rate and ultimately constant and equal temperature. If the stress-mechanical
strain diagrams are ultimately different then history dependence in the sense of plasticity
is observed, see Krempl [1981] where only isothermal cases are considered. [f the prior
mechanical history is identical but the temperature history is different for the two
specimens, (history 1-7 and history 1-8), as is the case in the example of Figure 1 4. then
a history effect is found. These definitions can also be applied to the examination of the
capabilities of constitutive equations.

THE UNIAXIAL VERSION oF TVBO

The present uniaxial formulation is an outgrowth of an orthotropic formulation
(OTVBO) given previously, see Lee & Krempl [1988]. It differs slightly from the formula-
tion given by Krempl et al. [1986] and these differences are delineated in the Appendix
and in the Appendix of Lee & Krempl [1988].

The stress and the strain are designated by o and ¢, respectively. When only uniaxial
states of stress are considered, they can be interpreted as engineering stress and strain or
as true (Cauchy) stress and true strain as the need arises. A superposed dot denotes the
total time derivative and a square bracket following a symbol denotes *“‘function of™.
With these preliminaries we list the first assumption of TVBO, total strain rate is the
sum of elastic, inelastic and thermal strain rates,

(n e=gl e+,
Further, the elastic strain is assumed to be independent of thermomechanical path,

.'lsg(_o._)=_6_.—.i —_C
@ “=a\im/)em Tt Pep

where T=0-0, is a variable temperature, © is current temperature, 8, is reference
temperature (room temperature), and E[T] is the temperature dependent elastic modulus.
The inelastic strain rate is a function of overstress, x=oc —g, the difference between the
stress and the equilibrium stress (a state vanable),

(3) éin -

x T’
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where x[x, T}=K [T}k [x. T): K[T] is the viscosity factor with the dimension of stress
and k{x, T], dimension of time. is the viscosity function employed by Krempl er al.
[1986). In that paper the viscosity factor K was set equal to the elastic modulus which is
not necessary here and in Lee & Krempl [1988]. The thermal strain rate is

(4) £ =2(T]T,

where 2{T] is a coefficient of thermal expansion, defined as the tangent of the thermal
strain-temperature curve. The sum of the elastic and inelastic strain rates is called the
mechanical strain rate and is denoted by £™.

The growth law for the equilibrium stress is

W[x-ﬂ6+1‘._§_<‘¥[x-ﬂ)c
E[T) éT\ E[T]
lg~/]

+(¢,[x, - —A—ﬁ(q?[x. T]"E.[T](" \Véx[:nn»)'([:n,'

where Y [x, T] and ¢{x, T] are shape functions and §/¢T denotes partial temperature
derivative. The shape functions ¥ and ¢, dimension of stress, are not increasing with
overstress but their dependence on temperature is not restricted; ¥ (0, TJ<E[T] and is
chosen close to E(T]. Further it is required that ¢[T]>E,[T). Lee & Krempl [1988]
assumed that the elastic growth of the equilibrium stress is path independent and can be

approximated by
g'e|~ i(q’[o' TlO')

(5) g=

© T4\ E[M
_vb. néﬂ-.i(wo. n)o
E(T] eT\ E[M]

which explains the formulation given in (5).
The kinematic stress, f, is another state variabie. Its evolution equation is

. X
7 ‘ =E .
(M S .mxlx' T
where E,[T] is the tangent modulus of the stress-inelastic strain diagram at the maximum
strain of interest.

PROPERTIES OF THE CONSTITUTIVE EQUATION

Eq. (2) and the first two terms on the right hand side of (5) together with (6) ensure
the path independence of the elastic deformation and the modeling of elastic regions.
Since the latter are important for TVBO the terms containing T must appear in (2) and
(5). Use of T in only one the equations would not allow for the modeling of elastic
regions.
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The *“‘extra terms™ for the present theory are the terms multiplied with T. They stem
from the assumption of path independence of elastic thermomechanical deformation.
While this assumption does not appear to be important to others, it leads. within the
context of TVBO at least, to terms which are equivalent to the “extra terms™ used by
others.

For constant strain rate and ultimately constant temperature TVBO admits asymptotic
solutions, see Cernocky & Krempl [1979] and Sutcu & Krempl [1989] where the isother-
mal cases are treated. When the asymptotic solution is reached which can happen at
small strains, the following relations hoid ({ } denotes asymptotic value).

(®) {e}={g}={/}=EM{e"}

where T is the ultimately constant temperature, We see that the kinematic variable (7)
controls the ultimate slope which can be positive, zero or negative. [t can further be
shown that

) {o-f}={x}+A[T]
where
(10) {x}=x[{x}Ie™/1+E,[TY[TD

is the asymptotic overstress which is independent of the initial condition and where
A[T]={g—/} is the rate-independant or plastic contribution to the stress. Examination
of (9) and (10) shows that { 6—/} is independent of temperature history and mechanical
history. At a given plastic or total strain when the asymptotic solution (8) holds. the
value of the stress ¢ at the same mechanical strain rate €™ and the same temperature T
may depend on the temperature history through the temperature dependence of E, in
(7). Since (8) holds always the slopes of the stress-mechanical strain curves are equal
and independent of thermomechanical history. The present theory can at most predict a
temperature history effect which manifests itself by parallel curves as indicated in
Figure 1 5. When the tangent modulus E, is zero no history dependence will be predicted
by the present theory.

The formulation given above models cyclic neutral behavior and recovery of state is
not included. A cyclic hardening formulation of VBO has been given by Krempl & Yao
(1987] and the inclusion of recovery was proposed in the context of an orthotropic theory
of VBO by Choi & Krempl [1988). While these phenomena are important for modeling
some elevated temperature properties they are not included in the present paper which is
mainly intended to elucidate the role the “‘extra terms”. This can best be achieved with
the present version of TVBO. Although we cannot prove that this is the case, the effects
of these “extra terms” are expected to be similar when cyclic hardening and/or recovery
of state are modeled.

The asymptotic relations do not depend on y[x, T)/E(T] or any partial temperature
derivatives. The “extra terms” have therefore no bearing on the asymptotic solution.
They will affect the nearly elastic behavior and the transition from nearly elastic to the
inelastic behavior. Numerical experiments are necessary to cludicate their cffect. No
analytical representation is possible in the transition region.

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. VOL. 10. N* 2, 1991




NUMERICAL SIMULATIONS IN THERMOVISCOPLASTICITY 179
Material properties used in the simulations

In the application of TVBO the material functions and constants have to be determined
from suitable experiments at constant temperature. The present theory implies that all

TaBLE I. — Qualitative properties of the three materials used in the numerical experiments.

Material property MTLI MTL2 MTL3
Elastic modulus. E small (d) high (d) same as MTL2
Tangent modulus E, small (i) 0 same as MTL2
coef. of thermal exp. 2 small (c) high (i) same as MTL2
Strength® high (d) high (d) small (i-d)
Rate dependence*® high (i) small (o) same as MTL2
¢E
— /E?
T A* B same as MTL2
LA Y) 10°
JI‘(E c* D" same as MTL2

( ) Indicates vaniation with increasing temperature; d-decreasing, i-increasing, c-constant.
* As measured by flow stress at a given strain.
** As measured by the asymptotic value of the overstress for £.,=10"*s~*, see Eq. (10).

* A= =T75(10°~75ST). B=-S7.5/(231x 10°~S7.5T. C=—-0.15+0050 exp (-C,|x|) (0STS400 K)
~0.625+0.125 exp (—C,|x]) (4005 T $800 K). D= —0.350+0.313 exp (- C, | x}).

the properties can be determined from isothermal tests and that the thermal behavior
can be obtained by interpolation. There are at the present not enough material data
available to check this hypothesis.

The influence of the extra terms on the behavior predicted by TVBO can, however,
be ascertained by postulating the material properties.

Some qualitative properties of these hypothetical materials which are close to real
materials are listed in Table 1. It can be seen that the strength (as measured by the stress
level of the stress-strain diagram) decreases for MTL]1 and MTL2 with temperature.
Such a behavior is usually observed. There are cases where the strength increases with
temperature before it decreases. The Nickel Aluminides are one such example, see
Lee & Krempl [1989], and MTL3 represents this behavior. As indicated in Table I the
three materials differ also by their elastic modulus, their coefficient of thermal expansion
and their rate-dependence as measured by the asymptotic overstress at a fixed strain rate
and at constant temperature. As the overstress increases the rate-dependence increases
also. The properties of the three materials are completely determined by the constants
listed in Tables II-IV. These properties manifest themselves in stress-strain diagrams
when the set of differential equations is integrated for a given stress or strain or thermal
history. In the following stress-strain diagrams are displayed to give an indication of the
properties of the three materials.

Numerical experiments

All numerical experiments were performed on personal computers using the IMSL
routine DGEAR.
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TasLe [I. — Material constants as a function of temperature for MTLI.

Young's modulus, E(T] (MPa}

0ST*!' 5400 K 4005T 5800 K
E=100,000-75T E=100.000-75 T
Viscosity function. x[x, T}=K, (I +{x|K,;) %
08TS400K 4005 TS800 K
K,=10%10°-0.75x 10° T (MPa's) K,=10x10°-0.75x10° T (MPa's)
K,;=50+005T (MPa) K;=-10+02T (MPa)
Ky=15 K,= 15
Modified shape function. ¥ [x. TVE[T]=C, +(C, - C,) EXP (- C,|x|}
0STS400 K 4005 TS800 K
C,=08~-0.125x10"°T C,=1.0-0625%10"°T
C;=0.98-0.75x(0°*T C,=1.15-05x10"°T
Cy=0.07-025x10"*T (MPa"!) Cy=0092-08x10"*T (MPa"")
Shape function, @ [T] (MPa)
0sTS400 K 4005 T 5800 K
P=08x10%-75T o=075x10°-625T
Rate independent contribution to the stress, A (T} (MPa)
agTS400 K 4005 T 5800 K
A=500-0S5T A=500-05T
Tangent modulus, E, [T} (MPa)
05TS400 K 4005 T 5800 K
E,=2500+125T E=2500+125T
CoefTicient of thermal expansion, a(K~')
05Tg400 K 4005 T 5800 K
2=02x10"* a=02x10"*

*! T=8-8,, where 8 is current temperature and 8, is room temperature.

ELASTIC BEHAVIOR

To illustrate the “path-independence” of elastic behavior, the mechanical strain and
the temperature histories shown in Figure 2 are used. The responses of MTLI1 with
additional erms and without additional terms are depicted in Figure 34 and Figure 34
respectively. [The additional terms are those muliiplied by T in (2) and (5).] The stress-
strain curves at RT (room temperature) and at RT + 800 are also shown. It is clear from
a comparison of Figures 3a and 35 that the additional terms ensure the scress response
to reach the RT + 800 isothermal curve as soon as the temperature reaches that value.
The ratio of o/e follows the temperature dependent elastic modulus. This is not the case
in Figure 3 b, where a delay is observed. Here, the slope of the stress-strain curves follow
the temperature variation of the elastic modulus.

Although inelastic strain rates are always present it TVBO, they are extremely small
in the quasi-elastic regions. For negligible overstress and therefore inelastic strain rate
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TasLe [II. — Material constants as a function cf temperature for MTL2.

Young's modulus. E[T]} (MPa)
0ST* 5600 K

600sT5800K

E=231.000-575T

E=231.000-575T

Viscosity function, xfx. T[=K, (1 +|x[/K;) " *: K, =E[T)xK?}

05Ts600 K

600ST <800 K

K$=3947-0865x 1072 T(s)
K,=38.1+0.119 T (MPa)
K,=20

K?=39.47-0.865x 10"2 T(s)
K;=-19.2+0.2145 T (MPa)
K,=20

Modified shap function, ¥{x. T/E[T]=C, +(C,~C,) EXP (-C,[x|)

08TS600 K

600sTS800K

C,=068-035x10">T
C,=09-0375x10"*T
C,=007 (MPa"")
Shape function, o [T] (MPa)
0sT5$600 K

C,=068-035%10"°T
C,=09-0375x10"*T
C,=0.07 (MPa™")

600sT<S800 K

¢=157,080-107.87S T

Rate independent contribution to the stress, A [T} (MPa)
05T5600 K

®=147420-91.775 T

6005T5800 K

A=520-0.587ST
Tangent modulus, E, [T} (MPa)

A=520-05875T

0sTS400K 4005T5500 K
E,=0 E,=0
CoefTicient of thermal expansion, a(K ")
0sTg600 K 600ST 5800 K

2=0.103% 104 +0475x107* T

2=0.103x10"*+0475x10"* T

*! T=08-8,, where is current temperature and 8, is room temperature.

the response of TVBO can be approximated by

= dir(Ecﬁ)z :%(wf. n)’

and this response is verified by Figures 34 and 35

The behaviors of MTL2 and MTL3 are similar. However, their elastic regions are
small compared to MTLI1, and are therefore not graphed.

INELASTIC BEHAVIOR

Although the additional terms are introduced to insure the path-independence of the
clastic behavior their influence reaches into the inelastic region as will be demonstrated
by examining the response at various temperature rates and strain rates. The responses
are dependent on the material properties.
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TaBLE IV. — Material constants as a function of temperature for MTL3.

Young's modulus, E{T] (MPa)

0gT* 5600 K 600sTS800 K
E=231.000-575T E=231.000-575T

Viscosity function. x{x. T]=K, (1 +|x|/K;) % K, =E[T]xK?

05Tg600 K 600sTS800 K

K9 =39.47-0.865% 1072 T(s) K?=3947~-0865x10"2 Ts)
K,=38.1+0.119 T (MPa) K;=~192+02145 T (MPa)
K,=20 K,=20

Modified shape function, ¥ [... TVE[T]=C, +(C,-C,) EXP (- C,|x|)

0ST5600 K 6005 T 5800 K

C,=068035x10"°T C,=068-0.35x10"°T
C;=09-0375x10"¢T C,;=09-0375%10"*T
Cy=0.07 (MPa™") C;=0.007 (MPa"')

Shape function, ¢[T] (MPa)

058Tg600 K 600STS800 K

o=157,080-107875 T o=147420-91.775S T

Rate independent contribution to the stress, A [T} (MPa)

08Ts600 K 6008 TS800 K

A=90+0.658 T A=800-0525T

Tangent modulus, E,[T] (MPa)

05Ts400 K 4005TS800 K

E'ﬂo E'-o

CoefTicient of thermal expansion, (K~ ?)

08Ts600 K 6005 T 5800 K

a=0.103%10"4+0475x10°° T 2=0.103x10"*+0475x10°°* T

¢! T=0-80,, where 8 is current temperature and 8, is room temperature.

(i) Monotonic siraining and temperature cycling

The imposed history consists of monotonic straining at a constant mechanical strain
rate of 10~ %s™! and temperature cycling at a rate of +8 K/s as depicted in Figure 4.

The responses of the three materials with additional terms and without additional
terms are given in Figures 5A-5C together with the isothermal stress-strain curves
performed at the strain rate of 10~ 3s~*. Since the temperature dependence is monotone
for MTL1 and MTL2, the stress-strain curves at the temperature extremes are shown.
The highest strengh is reached at RT +600 for MTL3 and this isothermal stress-strain
diagram is graphed in addition to those at the minimum and maximum temperature for
MTL3 in Figure 5C.

Comparing the isothermal curves it is evident that the tangent modulus E, is zero for
MTL2 and MTL3 whereas it is positive for MTL 1. This observation is also an indication
that the asymptotic solutions have been reached on the graphs.

The additional terms have a significant effect on the response of MTL1 but their
influence on the behavior of MTL2 and MTL3 is surprisingly small. In none of the cases
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Fig. 5. — Isothermal responses at RT and at RT +800 and response to the thermomechanical history of
Figure 4. Curve a depicts the response with additional terms. The response without additional terms is
designated by 5. MTL! (A); MTL2 (B); MTL3 (C).

the stress-strain curves at the temperature extremes are exactly reached. The variable
temperature curve (a) in Figure 5 A, however, comes close to them.

When the temperature cycle is aitered to include 400 s hold times at either extremes.
the curves with and without the additional terms reach the stress-strain curves at the
temperature extremes for the three materials. These observations show that there is a
time delay built into the constitutive equations and that sufficient time must be allowed
for the attainment of the asymptotic response. Details are to be found in Lee [1989).
Again the response of MTL1 is sensitive to the additional terms but this is not true for
the responses of MTL2 and MTL3.
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(ii) Effect of strain and temperature rate

For the next set of experiments the strain rate was reduced by one order of magnitude’
to 107%s~!. The temperature rate which is now set to 0.8 K/s (A) or to 0.08 K/s (B) is
depicted in Figure 6.

The responses of the three materials are graphed in Figures 7a through 7c. Since the
effect of the omission of the additional terms has been shown already in Figures Sa
through 5 4 only the responses with the additional terms are shown.

By comparing the respective isothermal curves in Figures § and 7 the influence of rate
can be ascertained. It differs from material to material.

Since the ratio of strain rate to temperature rate remains constant and equals that of
Figure 5 for the fast temperature rate (A), no basic difference in the response curves was
expected and the numerical experiments bear out this expectation. When the temperature
rate is reduced, temperature history B in Figure 6, more time is available to approach
the asymptotic solution and the isothermal stress-strain curves are nearly reached for the
three materials. The wavy behavior of curve B in Figure 7¢ is due to the unusual
temperature dependence of the strength.

Omitting the additional terms would not change the observation of the frequency
effect but would maintain the differences between MTL1 and MTL2 on the one hand
and MTL3 on the other as shown in Figure 5.

The numerical experiments demonstrate that the solutions tend to approach the
asymptotic solutions but sufficient time is needed so this can happen. The additional
terms have no influence on the asymptotic solution but can strongly influence the
transient behavior.

(iii) Cyclic loading

The theory presented here models cyclic neutral behavior and a closure of the hysteresis
loop is expected for the isothermal case. In thermal cycling the situation may be different
and consequently some numerical experiments are performed using the loading conditions
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Fig. 9. = Response to thermomechanical history of Figure 8. First quarter cycle A; first cycle B: fifth cycle C.
MTLI with additional terms (a); MTL1 without additional terms (b). MTL3 with additional terms (¢).

depicted in Figure 8. Since temperature and strain increase simultaneously the loading
corresponds to in-phase cycling.

The response of MTL1 with and without additional terms is depicted in Figures 9a
and 95, respectively for the first five cycles. It is seen that the loops do not close and
that the shift of the loops is larger without the additional terms than with them.
Surprisingly no such shift is observed for MTL2 and MTL3. For these materials the
loop closes after the first cycle. The hysteresis loop for MTL3 is depicted in Figure 9c.

Discussion

GENERAL

The numerical experiments confirm the theoretical predictions regarding the behavior
in the quasi-elastic region. With the path-independent formulation of the elastic strain
rates the response curves follow the temperature path immediately. Stress and strain
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reach their respective values as soon as the temperature does. This is clearly demonstrated
in Figure 3a.

The asymptotic behavior is independent of the extra terms and can be independent of
the temperature history. This property becomes only apparent when there is sufficient
time for the asymptotic solution to develop. The temperature rate is too fast in relation
to the mechanical strain rate in Figure 5 and the asymptotic solution is not reached. It
is almost reached for the slow temperature change, curve B in Figure 7. When 400 s
temperature holds are included at the temperature extremes in Figure 45, as it was done
by Lee [1989], the absence of a temperature history effect is clearly demonstrated for
MTL2 and MTL3, see Figures 4.16 and 4.17 of Lee [1989), respectively. For MTL1 the
400 s hold-time is not enough to react on the asymptotic solutions. Moreover, since
E,#0 for this material a temperature history effect equivalent to that shown in Figure 16
could be modeied.

The influence of additional terms vanishes if either the temperature rate is zero or if
all the relevant constants do not depend on temperature. These terms were shown 1o be
essential for modeling path independence in the quasi elastic regions and to influence
the transition from this region to fully inelastic behavior. The asymptotic behavior is,
however, not affected by these terms. At a constant mechanical strain rate and an
ultimately constant temperature the asymptotic siope of the stress-mechanical strain curve
will be independent of prior history.

The numerical experiments also show that the TVBO is capable of modeling very
complex temperature dependence such as that of MTL3. At the same time general
features of the equations are maintained. The existence of asymptotic solutions is one
example.

With different constants and different material functions & [x], ¥ [x] and ¢ [x] different
shapes of the stress-strain curves and different temperature dependencies can be modeled.
In an application the material constants and functions must be determined from isother-
mal experiments at different temperatures. This presupposes that the real matenial does
not exhibit a temperature history effect. The data reported by Chan & Lindholm [1990]
seem to exhibit this property.

The additional terms have a significant effect on the transition from quasi elastic to
inelastic behavior for MTL1 but their influence for MTL2 and MTL3J is small, see
Figure 5. The reason for this difference seems to lie in the different temperature depend-
ence of the elastic modulus and of the y-function. It can be seen from Table I that the
extra terms (9E/3T)/E? and (8/0T)(¥/E) are smaller for MTL2 than for MTLI for small
overstress x. If it is assumed that the most significant effects are in the elastic region
(when x is small), the absence of a major influence of the extra terms for MTL2 and
MTL3 is explained.

It is of interest to ascertain under what conditions the extra terms will have an
influence. While it is difficult to make a precise statement the relevant equations can be
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obtained easily as

. . + CE/
11 f'={g-To— /E}E
an £ (o céT/ )/ and
V- s (W CE/ ))
12 iy Z|{o+To| — V-—=E
(2 g E(° °(e'r/‘l' et/

where { has to evaluated at negligible overstress. It can be seen that the product of
temperature rate time stress times the temperature derivatives of the material properties
over the respective properties has to be significant relative to the stress rate for the extra
terms to be influential. It is also of interest to note that the major influence of the terms
comes through Eq. (11). Usually the temperature dependences of E and Y have the same
trend and the contributions of E and ¥ in Eq. (12) tend to compensate each other. (To
ensure the existence of the quasi elastic regions ¥ [0, T] should be less than but close to
the elastic modulus E[T).) On the basis of these expressions it is possible to get an
estimate of the significance of the extra terms. For a material which has a strong .
temperature dependence of elastic modulus the effect is most likely to be significant.

It is also evident that the extra terms make the response stiff, especially the transition
from the elastic .0 the inelastic region. This property was deemed desirable, Walker
[1981] and NASA [1984]). A comparison of the prediction of the theory with thermo-
mechanical tests is necessary to ascertain the modeling capabilities of VBO.

CYCLIC MECHANICAL STRAIN AND TEMPERATURE

Under isothermal conditions the present theory represents cyclic neutral behavior and
the hysteresis loop closes after one cycle. Suprisingly a shift of the in-phase thermomech-
anical hysteresis loop is observed for MTLI in Figures 9a and 95. The shift is more
pronounced when the additional terms are absent (Fig. 95) than when they are present
(Fig. 9 a). In Figure 9a the shift is most likely produced by a net contribution per cycle
of the kinematic variable f when (7) is integrated. This hypothesis seems to be confirmed
when Figure 94 is compared with Figure 9¢ where no shift is observed for MTL3 for
which E,=0. The strain range in the cyclic test is such that the asymptotic solution is
not reached for MTL1 at RT and for MTL3 at the maximum temperature (sec the
stress-strain diagrams in Figs. 5a and Sc). As a consequence the cycle loading takes
place within the transient region and a net contribution can remain after a cycle which
then accumulates from cycle to cycle. It is not expected that a stable hysteresis loop will
be reached for MTL1.

It has been shown that the additional terms make the response of TVBO stiff. This
fact may explain the larger shift observed in Figure 95 compared to Figure 94a. The shift
consists only of the E, contribution of Figure 9 a (the additional terms are absent.). Since
the additional terms where shown to be unimportant for MTL3 their omission is not
expected to produce a significant shift of the hysteresis loop in Figure 9¢.

It should be mentioned that the shift does not necessarily have to be in the direction
of positive stress as is the case in Figures 92 and 9b. A different set of material constants
could conceivably cause a shift in the direction of negative stress.
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The effect of strength increases with temperature is clearly evident from the shape of
the hysterexis lop in Figure 9c. A considerably higher stress level is reached upon heating
with MTL3 than with MTLI. On the othér hand MTL3 yields upon cooling down
whereas almost linear behavior is shown for MTLL.
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APPENDIX

To compare the growth la*- “or the «quilibrium stress in the present theory with one
in [Krempl et al., 1986}, the t:  :al uniaxial equation in (5) is reduced to the isothermal
one,

an = as(om- (o, (1- YY) X

The isothermal growth law for the equilibrium stress obtained after same algebra from
{(Krempl er al., 1986] is

z(1+v)¢-[x1 (x D o 1%
3 +¢[]m (‘H]E)“

In the present paper the tangent modulus E, is defined with respect to the inelastic
strain and A is defined as the asymptotic value of {g—f}. These quantities are related
to E? and A* defined on the basis of total strain by E? = E,/B and A* = A/B, respectively.
with B=(1+E,/E).

Once substitution is made (A — 1) and (A-2) are similar except for the following. ¢ [x]
and |g—f| and x are used in (A-1) whereas | x| and (g—/) are employed in (A-2). The
function @([x] can be set equal to Y (x] without changing the initial elastic and the
asymptotic properties; it was necessary because of invariance requirements in the ortho-
tropic formulation (see [Lee, 1989]. Switching the absolute signs from x to g—f was
initially proposed by Sutcu (1985] to facilitate the orthotropic formulation. He showed
that there was no essential change in the uniaxial modeling capabilities. A similar change
has been implemented in the context of rate independent plasticity by Burlet & Cailletaud
(1987).

In [Yao & Krempl, 1985] no distinction was made between elastic and inelastic Pois-
son's ratio. The new theory considers separate constant elastic and inelastic Poisson’s
ratios. Setting v=1/2 reduces the first factor in (A-2) equal to unity.

The purpose of f, the kinematic variable, is to set the asymptotic tangent modulus.
Yao & Krempl [1985] and Krempl er al. [1986] used a algebraic expression based on

(A-2)

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. voL. 10. N 2. 1991




NUMERICAL SIMULATIONS IN THERMOVISCOPLASTICITY 191

total strain. Here, (7) is incremental on the basis of inelastic strain rate. This formulation
is advantageous for the thermal case. For the isothermal case both formulations are
equivalent.
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ABSTRACT: A previously derived cyclic neutral thermoviscoplasticity theory for fi-
brous metal-matrix composites (Yeh and Krempl [1]), which combines the vanishing fiber
diameter (VFD) model with the thermovisceplasticity theory based on overstress (TVBO)
is specialized for transversely isotropic, thermoelastic fibers and an isotropic, thermovis-
coplastic matrix. Numerical experiments are used to illustrate the predictive capability of
the theory. Simulations include the influence of volume fraction on the monotonic and
cyclic loading behavior in the fiber and transverse directions with creep holds for B/Al and
B/Ti unidirectional composites and thermal cycling of B/Al. The three-dimensional theory
permits the calculation of the actual Poisson’s ratio in the tests. The results compare favor-
ably with sparsely available experimental results.

INTRODUCTION

ETAL-MATRIX COMPOSITES are intended for use in structural applications
under constant and variable temperature. In applications the deformation
behavior must be known so that the lifetime of a component can be calculated
before it is being built. To this end various theoretical and experimental investiga-
tions have been performed which are referred to by Yeh and Krempl [1.2).
Unified theories of time (rate)-dependent material deformation behavior have
been proposed recently. In these theories creep and plasticity are not separately
accounted for. The thermoviscoplasticity theory based on overstress (TVBO) de-
rived by Lee and Krempl [3] offers the advantages of a unified theory. It has been
combined with a simple composite model, the vanishing fiber diameter model
(VFD) by Yeh and Krempl [1,2] and permits the simulation of observed rate de-
pendence in metals and alloys which includes strain rate effects and hold-times
with creep and relaxation. It is simple to use and can be exercised on a PC since
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it only requires the integration of ordinary differential equations. In this way gen-
eral features can be explored with ease. If needed more sophisticated micro-
mechanics models can be employed to increase the accuracy of the composite
analysis.

The purpose of this paper is to perform numerical experiments using a previ-
ously developed composite model {1}. The experiments explore the influence of
fiber volume fraction ¢/ on monotonic and cyclic behavior, the effect of creep
hold-periods in the fiber and transverse directions and the behavior of B/Al under
thermal cycling without constraint. Actual Poisson’s ratios are derived and shown
to be influenced by the change from monotonic to creep loading.

MATERIAL AND COMPOSITE MODEL

The composite model developed by Yeh and Krempl {1} which combines the
TVBO (3] and the VFD of Reference [4] is used in the numerical experiments of
this paper. The fiber is transversely isotropic thermoelastic with the matrix
idealized by the isotropic, incompressible, cyclic neutral TVBQ. Following Ref-
erence [1] the fiber direction is the 3-direction with the |- and 2-axes denoting the
transverse directions. The volume fractions of fiber and matrix are ¢/ and c™, re-
spectively. As usua. o and ¢ denote the stress and small strain vectors, respec-
tively. Quantities with no superscript denote stresses or strains applied to the
somposite. Matrix and fiber quantities are identified by the appropriate super-
scripts. Details of the theory and its derivation can be found in Reference (1}.

To perform numerical calculation the material constants of Equations (11)-(14)
in Reference {1} must be known. For specific B/Al and B/Ti composites a com-
plete set of data are not available. Consequently “plausible” properties were
postulated. Literature data for the thermoelastic boron fiber were used or as-
sumed (see Table 1). The data for Al and the Ti matrices are from tests on related
monolithic materials by Yao and Krempl |5] and Krempl et al. (6], respectively.
The material constants listed in Tables 2 and 3 give rise to the mechanical proper-
ties which resemble typical matrix properties. However, they are not the exact

Table 1. Elastic properties for boron fibers.

Properties [

£ (MPs) 413,400 .

"” 021 *

G'u (MP2) 170,830 b
ab (m/m/*C) 6.3E-8 t

a’ (m/my/*C) 8.3E-6 '

E' (MPa) 413,400 .

G'e (MPB) 170,830 b

*Kreider and Prewo [12).

Tsirtin (13].




Table 2. Thermoelastic and thermoviscoplastic properties of the Al matrix.

E™ = 74,6571 - (T/933)] (MPa)*

v = 0.33°°

G™ = 28.066[1 - (T/933)%] (MPa)*

a™ = 2.35E-5 + 2.476E-§(T - 273) (m/im/°C)**
qQ(T™] = ¥"[T"|IE" p™ = ETIK™
Viscosity Function: k™[T'"] = k\[1 + (I "/ka))~"

ky = 314,200 (8) Kk, = 71.38 (MPa)
ky = 53 - 0.05(T - 273)*"'

Viscosity Factor: K™ = E™

E™ = 619{1 - (T/933)%] (MPa)"*

A" = T2.24{1 - (T/933)3) (MPa)**

Shape Function: ¥7[['™] = ¢, + (2 — C)) exp(=Ca['™)

¢y = 18,5111 ~ (T/933)%] (MPa)"*

C2 = 73,910{1 - (7/933)%] (MPa)"*

Cy = B.43E-2 + 1.06E-4T — 273) + 1.914E-&(T - 2732
+ 5.304E-9(T - 273)° (MPa™)**

inelastic Poisson’s Ratio: 0.5

T=K 183K < T < 933K

*Estimate. Temperature dependence due to Hillig [14).
* *Estimate.
TYso and Krempl (S).




Table 3. Thermoelastic and thermoviscopiastic properties of
the Ti alloy matrix.

€™ = 132,848.4 ~ 38.96T (MPa)***

»™ = 0.31°°

G™ = 50,705.5 - 14.87T (MPa)***

a™ = 8.4€-6 (m/m/*C)""
qT[T™] = ¥*[P"|/E™ p™ = EPIK™
Viscosity Function: k™[['™] = k)1 + (r”/k,)j-n
Kk, = 314,200 (9)° k; = 117 (MPa)*
ks = 18.646 ~ 0.007X(T - 273)***
Viscosity Factor: K™ = £
EM = 1270.4 - 0.47927 (MPa)* **
A" = 856.55 - 0.501T (MPa)* **
Shape Function: ¥"[I"™] = ¢, + (C2 ~ C1) @xpl =C3'")
¢ = 88,987.5 -~ 37.5T (MPa)*-**
C2 = 131,438 ~ 38.548T (MPa)°*-**
Cy = 0.0205 + 4.58E-4(T - 273) (MPa"")***
inelastic Poisson’s Ratio: 0.5

TaK 20K<T<T773K

*Krempl ot al. (8).
* *Estimate.
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model .of a specific composite. The temperature dependence of the inelastic
stress-strain behavior of Al was assumed and is illustrated in Figure | of Refer-
ence [2). The results presented hereafter are believed to represent typical general
behavior of B/Al and B/Ti composites.

NUMERICAL EXPERIMENTS

The IMSL routine DGEAR is used to integrate the set of nonlinear coupled.
first order differential equations under appropriate initial and boundary condi-
tions.

Volume Fraction and Rate Effects in B/Al and B/Ti

Although generally not appreciated, inelastic deformation behavior of metals
and alloys can be rate dependent at room temperature. This fact has been con-
sidered in the TVBO model which is based on observed behavior. As a conse-
quence rate effects, creep and relaxation are predicted in the inelastic range at
room temperature.

Uniaxial tests are simulated where the overall strain rate is kept constant except
for a 300 s creep period with constant stress introduced at the maximum strain
of 0.5%. Tests in the fiber and transverse directions are performed to study the
influence of strain rate and volume fraction on the behavior in the straining direc-
tions and Poisson’s effects.

For a constant strain rate the influence of fiber volume fraction on the stress-
strain behavior in the fiber direction and the development of the transverse strain
¢, are depicted in Figures | and 2, respectively. As expected the B/Ti composite
is, at a given volume fraction, stronger than the B/Al. It is also observed that the
creep strain accumulated during 300 s increases with decreasing fiber volume
fraction and is larger for B/Ti than for B/Al. For most of the straining B/Al devel-
ops a larger absolute value of the transverse strain than B/Ti. As the fiber volume
fraction becomes smailer the Poisson’s effect increases for both composites. The
actual Poisson’s ratio which is the slope of the curves in Figure 2 changes at the
transition to the creep period.

The curves in Figure | are somewhat nonlinear and their nonlinearity increases
with decreasing fiber volume fraction. They are affected by the load transfer be-
tween matrix and fiber and the yielding behavior of the matrix. The curve for
¢/ = 0.1, B/Al in Figure 1 shows initial yielding around 0.1%. At this strain the
matrix starts to yield as shown in Figure 3 and this yielding causes the overall
stress-strain curve to bend over. Figure 3 also reveals that the matrix stress and
equilibrium stress decrease during creep. Since the matrix overstress 05 — 27
decreases also transient or primary creep is modeled. This matrix overstress is
the driving force of the rate dependence within TVBO.

Due to the matrix dominated behavior, the rate effects are most pronounced in
the wransverse direction. Results are shown in Figures 4-6. As expected the B/Ti
composite shows higher strength and a greater rate sensitivity than B/Al. But the
B/Al composite exhibits a greater creep strain accumulation than the B/Ti. As the
prior strain rate increases the accumulated creep strain in 300 s increases also for
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Figure 1. Overal stress-strain curves in the fiber direction of 8/A! and B/Ti with different
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Figure 2. The development of the transverse strain during the tests shown in Figure 1.
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Figure 4. Transverse stress-strain curves of B/Al and B/T1 with different volume fractions
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both materials (see Figure 4). These are properties of the matrix constitutive
equations and reflect observed experimental behavior.

The evolution of the axial strain ¢, and of the transverse strain ¢, is depicted in
Figures 5 and 6, respectively. They show the influence of volume fraction on the
induced strains. At the same strain in the i-direction B/Ti exhibits a larger ab-
solute value of the strain in the 3-direction than B/Al. The opposite is true for the
2-direction. Also. the trend of the influence of the volume fraction is opposite in
Figures 5 and 6. It is shown in Figure 6 that Poisson’s ratio increases with an in-
crease in volume fraction; it decreases in Figure 5. The model predicts a minor
influence of strain rate on Poisson’s ratio. The numerical tests whose results are
depicted in Figures 5 and 6, were repeated at a strain rate of 10™* s*' and the re-
spective curves were almost indistinguishable from those obtained at 10 s™' and
shown in Figures 5 and 6.

Cyclic Loading with Creep of B/Ti

The TVBO constitutive equations used herein represent cyclic neutral behavior
and the hysteresis toop closes after one cycle for cycling under symmetric stress
or strain limits. This property is passed on to the composite model as depicted in
Figure 7 (fiber direction) and Figure 8 (transverse direction). Each figure repre-
sents the response to a stress rate 1| MPa/s at a stress amplitude of +800 MPa
with creep periods introduced at a stress magnitude of 500 MPa. When the stress
magnitude increases the creep period is 300 s but is set to 100 hrs when the stress
magnitude decreases.

It is observed that the loops close after one cycle and that aimost twice as much
strain develops in the transverse than in the fiber direction. Despite the differ-
ences in creep time the creep strain accumulation is much larger upon loading
than upon unloading. This is an experimentally observed fact in monolithic mate-
rials and the TVBO model predicts this for the composite. The repository for
modeling this behavior is the difference in the evolution of the matrix overstress
during loading and unloading. Figures 7 and 8 show that this difference is larger
on loading than on unloading. It should also be noted that the matrix stress in the
fiber direction is not constant during the creep periods (see Figures 3 and 7).

Thermal Cycling of B/Al

The thermal cycling behavior of metal-matrix composite is of special interest
since the almost always existing mismatch between the coefficients of thermal ex-
pansion of fiber and matrix can lead to the development of internal stresses and
to very unusual thermal expansion behavior of the composite. This is especially
true for composites with graphite fibers which have one negative coefficient of
thermal expansion (see Wu et al. (7], Krempl and Yeh [2]). Here we illustrate the
free thermal expansion of B/Al. Starting from room temperature the temperature
is changed uniformly between + 120°C at a rate of 0.033°C/s for five reversals.

The overall strain-in-the-fiber-direction vs. temperature hysteresis loop of B/Al
is depicted in Figure 9. The composite expands on segment 0-1 but then changes
slope in segment 1-2. Upon decrease of temperamre from 120°C, the composite
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shrinks in segment 2-3 but the rate of shrinking is reduced after point 3. A similar
pattern evolves dur.ng the temperature increase from — 120°C. The loop closes
after one cycle.

The explanation of observed changes in slope can be found in the development
of the fiber and matrix stresses during cycling as shown inm Figure 10. At points
| and 3 where the slope changes in Figure 9 the matrix starts to yield with a cor-
responding change in stiffness. Afier these points the fibers with their low coeffi-
cients of thermal expansion have a stronger influence than before these points.

DISCUSSION

Influence of Volume Fraction and of Loading Rate

An increase in fiber volume fraction increases the stress level in the fiber direc-
tion (see Figure 1) and decreases Poisson’s ratio (see Figure 2). These results are
to be expected. Also the accumulated creep strain in 300 s increases with de-
creasing volume fraction for both composites when straining occurs in the fiber
direction (Figure 1). For transverse straining (see Figure 4), this is true for B/Al
only. B/Ti, on the contrary, exhibits more creep strain accumulation for ¢/ = 0.5
than for ¢/ = 0.1. B/Ti with ¢/ = 0.5 yields earlier and thus has a larger prior
overstress which drives the creep strain rate.

In Figure | the B/Ti composite develops more creep strain in 300 s than B/Al,
but the opposite is true in Figure 4. This result is surprising at first since the
model assumes that the Ti matrix is more rate sensitive than the Al matrix (the
spacing between stress-strain curves at two different rates is larger for the Ti than
for the Al matrix). However, at 0.5 percent strain inelastic flow is fully developed
for the B/Al whereas B/Ti is in the transition from linear to nonlinear inelastic
behavior. The creep stress levels are therefore not at an equivalent level and creep
behavior can be different (the creep strain rate is a highly nonlinear function of
stress level). For the loading in the direction of the fiber both composites exhibit
almost linear behavior up to 0.5 percent strain (see Figure 1) and the creep stress
levels can be considered equivaient.

For the TVBO model the observations can be explained in terms of the evolu-
tion of the matrix overstress. At 0.5 percent transverse strain the largest over-
stress, the asymptotic overstress characteristic of the strain rate has been reached
for B/Al. In the knee of the transverse stress-strain curve the overstress increases
and has not reached its asymptotic value for B/Ti. Further the tangent modulus
at strains beyond 0.5 percent is small and nearly constant for B/Al but large and
slowly decreasing for B/Ti. Creep rates increase with an increase of overstress
and a decrease in tangent modulus.

These examples demonstrate that the evolution of creep strains is governed by
a complex interaction between creep stress level and the material properties of
the matrix. Aside from these considerations Equations (11) and (AlS5) in Refer-
ence [1] show that the inelastic strain rate which is caused by the viscosity of the
matrix is also influenced by the elastic properties of the fiber.
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At the same fiber volume fraction the accumulated creep strain in 300 s in-
creases with an increase of the prior strain rate in the transverse direction (Figure
4). This is an experimentally observed behavior in monolithic materials and this
behavior carries over (o0 composite behavior.

The room temperature creep in the transverse direction predicted by the pres-
ent model was observed by Min and Crossman [8] in Gr/Al composites.

The curves for B/Al in Figure 5 show almost no growth in induced axial strain
beyond 0.4 percent strain. This implies that the plastic Poisson’s ratio »,, is nearly
zero. Evaluation of Equation (20) in Reference [i] using the pertinent values of
the matrix overstress yields n,, = 0. Figure 6 of Sun and Chen [9] reports a plas-
tic Poisson’s ratio close to zero for transverse tensile tests of unidirectional B/A|.
The inelastic Poisson's ratio 0, = n,; = 0.83 and obtained from Equation (18)
in Reference {l] for ¢/ = 0.475 for B/Al compares favorably with the experimen-
tally determined value for straining in the 3-direction as reported by Sun and
Chen (9] in their Figure 6.

The theory permits the calculation of the variation of the total overall Poisson’s
o v, = —¢/¢, for straining in the i-direction, i, J=123i#j Figure
1 shows the variation of this quantity as well as the inelastic Poisson’s ratio
defined by Equation (17) in Reference [1) for the transverse tensile test on B/Al
with ¢/ = 0.5 (see Figures 5 and 6). It is seen that both the inelastic and the total
Poisson’s ratio reach their limiting value before 0.5% strain. This behavior is due
to the stress-strain behavior of B/Al as depicted in Figure 4. For the B/Ti com-
posite which does not reach fully developed inelastic flow (see Figure 4), the
variation of Poisson’s ratios is quite different as shown in Figure 12 for ¢’ = 0.5
Immediately after the start of the creep test the inelastic and the total Poisson's
ratios become equal as it should be since the elastic strain rates are 2ero in a
creep test.

Cyclic Loading

In the presently used version of TVBO cyclic neutral behavior is modeled and
the hysteresis loops close after one cycle (see Figures 7-10). The TVBO theory
has been modified to account for cyclic hardening (see References [10] and (my))
and this feature can be implemented for composite analysis.

Figures 7 and 8 demonstrate that creep rate at the same stress level is much
higher on loading than on unioading. Again this is a feature which is observed in
monolithic materials and carries over to composites. This property is affected by
the overstress dependence of the inelastic strain rate. It should be noted that the
matrix stress is not constant during a creep test in the fiber direction. During
creep with a positive stress, strain is increasing, the stress in the elastic fiber in-
creases and to preserve equilibrium the matrix stress must decrease. This fact is
demonstrated in Figures 3 and 7. When a creep west in the transverse direction is
simulated, the matrix stress equals the overall stress and is therefore constant (see
Figure 8). Comparison of the widths of the hysteresis loops at zero stress in Fig-
ures 7 and 8 shows the effect of fiber reinforcement. At the same stress amplitude
much less strain develops in the fiber direction than in the transverse direction.
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The unequal creep behavior upon loading and unloading is also evident from
Figure 8.

%)uring thermal cycling between =+ 120°C of the freely expanding composite,
the present theory predicts the axial strain-temperature hysteresis loop for B/Al
as shown in Figure 9. There are changes in slope as indicated by the numerals |
and 3 in Figure 9. Figure 10, which shows the matrix and fiber stress-temperature
hysteresis loops, reveals that the change in slope in Figure 9 at points 1 and 3
coincides with the elastic-inelastic transition of the matrix. There is a coupling
between the thermal expansion behavior and the stresses in the fiber and in the
matrix which is caused by the mismatch of the coefficients of thermal expansion.
The coupling is very pronounced in Gr/Al where a large difference between the
coefficients of thermal expansion exists (see¢ Krempl and Yeh [2]). It should be
noted that the stress-strain behavior of the fiber is linear elastic, the fiber stress-
temperature hysteresis loop notwithstanding.

At the same temperature range B/Ti only exhibits elastic thermal expansion.
The yield stress of the Ti is much higher than the matrix stress resulting from the
thermal strain mismatch of fiber and matrix.
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ABSTRACT: The vanishing fiber diameter (VFD) model together widh the thermovisr o~
plasticity theory based on overstress (TVBO) are used to analyse the thermomechanical
behavior of unidirectional fibrous metal-matrix composites. Fiber and matrix can both be
transversely-isotropic. thermoelastic-viscoplastic. All material constants can depend on
current temperature. Yield surfaces and loading/unicading conditions are not used in the
theory in which the inelastic strain rase is solely 8 function of the oversiress, the difference
between stress and the equilibrium stress, a state variable of the theory. The three-
dimensional equations are derived and specialized for various simple loading cases such
as isothermal uniaxial and biaxial proportional and nonproportional loadings. The predic-
tions of this viscoplasticity theory during loading compere favorably with results from the
rate-independent plasticity theory. In addition it is capable of predicting creep, relaxation
and rate sensitivity.
INTRODUCTION

ETAL-MATRIX COMPOSITES are being considered for room temperature and

elevated emperature service and inelastic anslyses are required o ascertain
their behavior under load and variable temperature. The inelastic behavior is
generaily idealized as rate-independent elastic-plastic or by a creep model such
as power law creep. The former is considered to be appropriate for low homolo-
gous temperature whereas the creep laws are used for high homologous tempera-
ture applications. In these approaches the transition from one representation to
the other provides difficulties since creep laws are not mathematical limits of
rate-independeut plasticity and vice versa.

Unified material models do not separately postulate constitutive laws fot creep
and plasticity but consider all inelastic deformatior rate dependent. Experiments
with modern servocontrolled testing machines have shown rate dependence even
at room temperature for engineering alloys, e.g., stainless steels, Krempli {l],
6061-T6 Al alloy, Krempl and Lu [2], and titanium alloys, Kujawski and Krempl
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{3]. The transition from low t0 high homologous temperature behavior 15 usually
characterized by a decrease in strength and an increase in rate dependence. This
behavior can be modeled casily by unified laws if certain \natenal constants are
made to depend on temperature. When material daw are anaiyzed using separate
laws for creep and rate-independent plasticity, identification problems anise since
it is not always clear what portion of the inelastic deformation is to be attributed
to creep or plasticity. This difficulty does not arise with unified constitutive laws.
However. they are rather new and have not been used extensively.

The elastic-plastic isothermal behavior of fibrous metal-matrix composites has
been analyzed by Min [4], Dvorak and Bahei-El-Din [5.6]. Kenaga. Doyle and
Sun (7], Teply and Dvorak [8], Dvorak, Bahei-El-Din, Macheret and Liu (9},
and Sun and Chen (10).

Time (rate)-dependent isothermal analyses based on creep or creep/plasticity
faws were performed by Min and Crossman {11}, McLean {12.13], and Liihoit
(14]. Min and Crossman (11} also showed that 8 Gr/Al exhibits primary creep at
room temperatire in the transverse direction.

Residual stresses between fiber and matrix can have a significant influence on
the overa!l expansion and mechanical deformation behavior (see the experiments
and analyses by Min and Crossman (15]). Dvorak [16] demoastrated that in the
plastic range thermal and mechanical effects are coupled. Using the periodic hex-
agonal array model and the VFD model, the rae-independent thermomechanical
behavior of composites was predicted by Wu et al. {I7), and Bahei-El-Din [18],
respectively. Longitudinal and transverse tensile wests on B/Al and B/epoxy plies
reported by Meyn [19) showed some influence of strain rase on longitudinal
strength. For the B/Al material the transverse tensile strength was strongly af-
fected by rate of loading at room temperature. Surprisingly this dependence did
not increase with increasing temperature.

A rate-dependent micromechanical analysis of metal matrix using the unified
Bodner Model was performed by Aboudi [20]. In an extension of classical - -
thermal laminate theory Kremp! and Hong [21} used an orthotropic continuiin
viscoplasticity theory based on oversiress 0 represent ply behavior. Subse-
quently Lee and Krempl {22] extended the treatment to the thermal, elastic-
viscoplastic case. Application to the thermal cycling and thermomechanical load-
ing followed [23,24]. The thermal viscoplastic behavior of a ply was idealized as
an orthotropic continuum. With this theory the coupling between thermal and
plastic material behavior could not be modeled.

The purpose of this paper is o apply the thermal orthotropic theory of visco-
plasticity based on overstress (TVBO) which includes temperature-dependent
material properties 10 a micromechanics analysis of fibrous metal matrix com-
posites. The vanishing fiber diameter model (VFD) is employed which was pro-
posed by Dvorak and Bahei-El-Din (5] in the coatext of a three-dimensional
elastic-plastic analysis. The governing equations are derived and numerical ex-
periments are performed under isothermal uniaxial and biaxial proportional
loadings and compared with the predictions of the rate-independent plasticity
theory of Reference [5]. The present approach can in addition model rate sen-
sitivity, creep, relaxation and hysteresis and includes thermal-inelastic coupling.
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MATERIAL AND COMPOSITE MODELS

Transversely-Isotropic, Thermoviscoplasticity Theory
Based on Overstress (TVBO)

INTRODUCTION

The theory developed by Lee and krempl [22) is for infinitesimal strain and or-
thotropy. It is of unified type and does not use a yield criterion and loading/
unloading conditions. The elastic strain is formulated to be independent of ther-
momechanical path and the inelastic strain rake is a function of overstress, the
difference between stress o, and the equilibrium stress g; it is a state variable of
the theory.

The long term asymptotic values of stress, equilibrium stress, and kinematic
stress rates, which can be obtained for a constant mechanical strain . 3te and ulti-
mately constant temperature, are assumed to be independent of thermal history
as are the ultimate levels of the rate-dependent overstress and of the rate-
independent comtribution to the stress (see Yao and Krempl [25)). Therefore the
material functions and constants can in principle be obtained from isothermal
tests within the emperature range of interest.

The model can predict not only the rate-dependent phenomena such as creep,
relaxation. and rate sensitivity but includes inelastic incompressibility, ten-
sion/compression asymmetry, and invariance of the inelastic properties under
superposed pressure as special cases [22].

Constant elastic and inelastic Poisson’s ratios are defined for the uniaxial load-
ing cases. The theory permits the computation of the actual Poisson’s ratio which
depends on the loading history (22).

All material constants can be functions of temperature. This dependence is not
explicitly displayed. The temperature dependence can be the usual Arrhenius
relation or can deviate from that model.

For the representation of the equations, vector notation is used where stress
tensor components ¢ and the small strain tensor components ¢ are related to their
vector components by

0y = Ou 0 = On Oy = 0Oy Js = Ty Oy = Oy O¢ = On
and

€ = €y € = €n € = € € = 26y & = 26, & = 26
FLOW LAWS

In the context of an infinitesimal theory, the total strain rate, de/dt, is con-
sidered to be the sum of elastic, de*/dt, inelastic, de*/di, and thermal strain
rates, de'*/dt,

€= &' + é" + ¢ (D
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where the sum of the elastic and inelastic strain rate is called the mechanical
strain rate,

én = @ 4 i )

A superposed dot represents the total ime derivative, d/dr.
For each strain rate, a constitutive equation is postulated. The elastic strain is
assumed to be independent of thermal history, therefore,

d
€& = E(C"ﬂ) (3)

where C-' is the temperature-dependent compliance matrix.

As in the case of isotropy, the inelastic strain rate is only a function of the
overstress X. It denotes the difference between the stress o and the equilibrium
stress g, a vector state variable of the theory. Accordingly

& = KX @

The viscosity matrix K- controls the rate dependence through the viscosity fac-
tors K, and the positive, decreasing viscosity function k{I'].
The thermal strain rate is given by

é* = af 0)
with a the coeficient of thermal expansion vector. T is the temperature difference
from some damm temperature.

GROWTH LAWS FOR THE STATE VARIABLES

The growth law for g is the repository for modeling elastic regions and hystere-
sis. It is given by Reference [22]

. . dqu[T X
g=aqllle+T q;,- l o + @] = 8[q,[T] - p(1 — q(THI i}

©6)

where the dimensionless modified shape functions g, and g, control the shape of
stress-strain diagram. The dimensionless constant p represents the ratio of the
tangent moduli at the maximum strain of interest o the corresponding viscosity
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factors. p % 0. The invariant 6 is related to the rate-independent contribution to
the stress and is defined as

07 = 2'PZ (N

where P is a matrix whose components have the dimension of reciprocal stress
squared. The vector Z represents the Jifierence between the equilibrium stress g
and the kinematic stress f

Z=g-t 8)
where [ evolves according to

; P

f = k(T X )

Asymptotic analyses for the uniaxial isothermal case in References [25) and [26]
show that f determines & ultimately. The purpose of Equation (9) is to set this
slope which can be positive, zero or acgative.

The representations of the material matrices for the transversely isotropic case
and other explanations are given in Appendix I; ¢., ¢; and p in Equation (6) are
listed in Appendix 2. The above equations follow directly from Reference [22] by
assuming tension/compression symmetry.

The theory given above represents cyclic neutral behavior. Rate sensitivity,
relaxation and creep are represented. Since no recovery of state is modeled the
creep behavior is controlled by the signof p. If p > 0 the equations can only rep-
resent primary creep. Primary and secondary creep may be modeled forp = 0;
primary, secondary and tertiary creep can be represented in principle if p < 0.
Note also that p sets the slope of the stress-inelastic strain curve of the maximum
inelastic strain of interest through Equation (9) (see the discussion of the proper-
ties of VBO in References [25]-(27)).

When recovery of state is included in the model [28] the creep behavior is no
longer completely controlled by the sign of p and secondary creep can be repro-
duced at stress levels which are in the linear region of the stress-strain diagram.
Also the isotropic formulation of VBO has been extended to cyclic hardening
[29,30]. It is possible to inciude this property as well as recovery of state in the
orthotropic theory. This will be done in a future paper.

Vanishing Fiber Diameter Model

For the representation of the fibrous composite the vanishing fiber diameter
model (VFD) of Reference [5) is used. In this model uniform overall stresses and
strains, perfect bonding between fiber and matrix, and vanishing fiber diameter
are assumed even though fibers occupy a finite volume fraction of the composite
[S]). This leads to a single constraint condition in the fiber direction which is
assumed to be the 3-direction in this paper. In the transverse plane the fibers do
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not interfere with the deformation of the matrix [5}. The following constraint
equations hold '

g =06 =6 fori#3

&) = C’blj + c"‘é;‘
. (10)
i =clél +cmér fori 3

6'1=€';=€'?

In the above the superscripts f and m denote fiber and matrix, respectively. In
the sequel the superscript r is used to denote cither fiber or matrix. The volume
fractions of fiber and matrix are ¢/ and c*, respectively, with ¢/ + ¢™ = 1.

The Composite Model—-Thermoviscoplasticity (TVYBO) and Vanishing
Fiber Diameter Modd (VFD)

A unidirectional fibrous composite element is assumed where both the fiber
and the matrix can be represented by the transversely isotropic, thermovisco-
plasticity theory based on overstress (TVBO). On-axis representation and fiber
orientation in the 3-direction are postulated. Thermoelastic fibers are a special
case and the isotropic formulation of TVBO can be derived by making the substi-
tutions given in Appendix 1.

The three-dimensional equations representing the composite which has trans-
versely isotropic, thermoviscoplastic fiber and isotropic, thermoviscoplastic ma-
trix result from using the constitutive Equations (1)-(9) and the VFL constraints
[Equation (10)) together with the representations of the matrices given in Appen-
dix 1. We then have

¢ = Ca + (KX + (K*)"'X~ + (R)"0’ + (RY)'e~ + & (1)
together with a separate equation for the o5 component of the matrix

. _E- ’ELE"
55 = Eu & E.u Lo + o - En

".’“

er———— !
K X+ Xa)

|
X [W[X’ - 0.5(XT + XD} +

EnE” -

1 . E
- H‘- (b=E= - v'E')](m + 0 + (_55761’
.- I - .
- '(':T): a',"l - C—EE—”'E—(a" -a)T 12)
33
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In addition growth laws of equilibrium and kinematic stresses for fiber and
matrix are needed which are obtained by rewriting Equations (6) and (9) in terms
of matrix or fiber stresses,

. 3g°1T"
g = q’ir’jo + T% a’

4

X
+1q’(T’) = 0lq’[T] = pr(1 = g’ [T rahan (13

f =?%,TX’ (14)

where we have set g, = q, = ¢ for simplicity.

in the above C-* is the symmetric overall compliance matrix whose compo-
nents are functions of the elastic properties of fiber and matrix. The viscosity ma-
trices (K/)=', (K™)™ are not symmetric and their components together with
those of C~" are listed in Appendix 3. In the representation of the matrix proper-
ties, isotropy and plastic incompressibility were assumed. The viscoplastic for-
mulation and the rate-independent formulation [4.5] lead 0 a nonsymmetric
matrix which relates the contributions of the matrix stresses (o the overall in-
elastic strain rate. The matrices (R/)"* and (R™)"* contain time derivatives of
the elastic constants of the fiber and the matrix, respectively. Both matrices are
not symmetric (see Appendix 3). They are zero if the elastic constants are inde-
pendent of temperature. These matrices are the “additional” terms which can play
a significant role in modeling thermomechanical behavior (see Lee and Krempl
(31)). Finally the coefficients & are composed of the elastic constants and the
coefficients of thermal expansion (see Appendix 3).

Equation (11) shows that the overall strain rate is the sum of the overall elastic
strain rate, the overall inelastic strain rates contributed by the fiber and the
matrix, and the overall thermal strain rate in the case of constant elastic proper-
ties. If temperature-dependent elastic properties are assumed then two additional
terms contribute to the overall strain rate. They insure that the elastic behavior is
path independent (see Lee and Krempl [22,31])). When the fibers deform only
elastically their contribution to the inelastic strain rate vanishes.

Equation (I2) is used to calculate the instantaneous axial matrix stress which
cannot be obtained from the overall boundary conditions directly. E;; and L are
defined in Appendix 3. o7 is affected by mechanical and thermal loadings and
their loading paths. For instance, for the isothermal case when T = 0, matrix
stresses in the fiber direction (7, g7, f3) can evolve in unidirectional transverse
loading, or may evolve in unidirectional shear loading provided the initial value
of X7 is nonzero. For pure thermal loading (overall stresses are zero), ¢7 to-
gether with g7, £5 will develop due to the difference in the coefficients of thermal
expansion of fiber and matrix; these matrix stresses in the fiber direction cause
coupling between the mechanical and thermal loading in the inelastic range. If
the fibers deform elastically and the elastic constants are independent of tempera-
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ture, X4, X4, X%. and the terms in the second brace vanish. For isothermal case.
the temperature rate in the last werm becomes zero.

From these general equations some properties of the model can be derived. We
address inelastic dilatation and Poisson’s ratio.

INELASTIC DILATATION AND INELASTIC POISSON'S RATIOS

Assuming constant temperature, the rate of inelastic dilatation of the composite
€' can be computed from Equation (11). It consists of (€71)/ and (€)™ with

(én)’ m,—][(c’ = c'nly = nly + 2cmvmyi)EY,
+ c™(l = i = 2V E~NX! + X))

- 2ch = 2c™v™ES + 2cm(vh — ndOETIXY
(15)

cl
* ke

)" = e [(1 = 2v7)El
Eu ZE- K"k“‘[["‘] E3]
= (1 = 2V )E"XT + X7 - 2XD) (16)

where we have assumed isotropy and inelastic incompressibility for the matrix.
Even if the fibers detorm only elastically, (éi)/ = O, the overall inelastic
dilatation still exists. Similar results were obtained for rate-independént plasticity
(see References [4] and [32]).
For uniaxial loading in the i-direction the overall inelastic Poisson’s ratio based
on strain rates 7, can be defined by

N = - ;’— (ij=123,i#)) (1n
Elastic fibers and an isotropic matrix which exhibits inelastic incompressibility
are assumed. The inelastic Poisson’s ratios are

ZE.. (EJJ + 2c L) N3z (|8)

oL
(0 s B 2E.|.|) x (05 E,u

N2 = 'L
(1 +os5)xr - (os+E”)

= M (19)

E~(Xy — 2X7)

Ty = oL = N
2E,, [(I + 05 E—”) - (0.5 + ‘E:) X3 ]

(20)
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It i1s seen that n,, and n,, are constant, i.¢.. for loading in the fiber direction the
inelastic transverse strain rates are a fixed fraction of the inetastic strain rate in
the loading direction. In all other cases the inelastic Poisson’s rauo depends on
deformation through the overstress components [see Equations (19) and (20)}. (It
should be noted that the inelastic Poisson’s ratio of the matrix is equal to 0.5)
When the overstress components are zero, indeterminate expressions result from
Equations (19) and (20) which must be resolved.

The actual overall Poisson's ratios based on rates can be defined in analogy to
Equaton (17) (see Lee and Krempl [22]). and their values can be computed.

NUMERICAL EXPERIMENTS

Material Properties

To investigate the properties of the model the material constants appearing in
Equations (11)-(14) must be identified and the appropriate boundary conditions
have to be applied. A set of nonlinear coupled. first order differential equations
must then be integrated under appropriate initial conditions. Closed form solu-
tions are rare and numerical integration is the rule. In our case the IMSL routine
DGEAR is used.

{n this paper, isotropic, elastic fibers, and an isotropic, viscoplastic matrix are
postulated. To affect a comparison with rate(time)-independent plasticity, hypo-
thetical, but realistic material properties of fiber and matrix are assumed and are
listed in Table 1. (For the fiber isotropic elastic properties close to boron are
used, the isotropic matrix properties correspond closely to 6061 Al.) The elastic
properties are in common for both models. The stress-plastic strain relation of
the matrix for the rate-independent plasticity model is obtained from the visco-
plastic model at a strain rate of é = 107 s™'.

Comparison of Plasticity (P) and Viscoplasticity (VBO) Composite Models

The two models are compared under uniaxial loading in the fiber direction
tFigure 1), and under uniaxial as well as combined loadings in the transverse and
shear directions in Figures 2 and 3, respectively. Close agreement between the
two models is observed. For both theories, the stress-strain curves for biaxial
loading are more compliant in the inelastic region than those for unidirectional
loading. Also both theories predict almost linear behavior in the fiber direction
as seen in Figure 1. Significant inelasticity is observed only in the transverse
directions. For VBO a rate effect is evident and an adjustment of the rate within
reasonable limits can improve the correspondence between the two theories.

Despite its different appearance and the absence of a yield surface and of load-
ing and unloading conditions VBO can model typical plasticity effects. This is
demonstrated for nonnroportional loading paths ‘n Figures 4 and 5. The strains
at point 3 are highly dependent on the loading path. This can be easily seen when
the relevant endpoints of Figures 2 through S are compared.




Table 1. Material properties for hypothetical MMC.

Properties . Fiber Matrix
Volume Fraction 05 05
Elastic Properties
E (MPa) 40E+5 70E+4
v 021 0.33
G'u (MPa) 1.65E+5 263E +4
E31 (MPa) 40E+5 70E+4
Gis (MPa) 1.65E +5 2.63E +4

Viscoplastic Properties
Viscosity Function:
K™} = ki[1 + (P™ikg)) "

ky = 314,200 (3) k3 = 71.38 (MPa) ky = 52
Viscosity Factor:

K™ = E™
Shape Function:

¥7[F"] = ¢, + (C2 - ¢)) exp(-c3I'™)

¢y = 17,600 (MPa) c; = 69,300 (MPa) C3 = 0.08688 (MPa™)
E; = 800 (MPa) A" = 100 (MPa)
Inelastic Poisson’s Ratio:

n" = 0.5
Piastic Properties
Yield Stress:

o) = 77 MPa

Isotropic elastic-plastic matrix with Prager-Ziegier kinematic hardening rule is assumed {5).
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Figure 5. Transverse and shear stress-strain curves of viscoplasticity VFD model along the
loading path 0-2-3.

DISCUSSION

Comparison with Rate-Independent Plasticity Theories

Figures 1-3 demonstrate that VBO can represent the same behavior as rate-
independent plasticity theories which use yield surfaces. VBO can also model
true plasticity phenomena, the path dependence of the response, as shown in
Figures 4 and 5. This capability exists although the form of the flow law {Equa-
tion (4)] and the definition of the invariant I' of Equation (AS) are quite different
from the plasticity flow law. When, as it is usually done in raie-independent
plasticity, the von Mises yield surface is used, the matrix which relates stress in-
crements to plastic strain increments contains a term equivalent © X X' which can
become fully populated as the state of stress changes (see Equation (44) of
Dvorak and Bahei-El-Din [5), where g is used instead of X. Aside from the fact
that the flow law is viscoplastic, Equation (4) contains the matrix K-* whose
coefficients do not change with the state of stress [see Equation (A2)]. Only the
invariant ' which appears as argument in the scalar viscosity function k[I"]
varies with the state of stress. This apparent difference can be easily resolved by
rewriting the flow law. After dividing and multiplying by I'? Equation (4) can be
rewritten as

& = I/PYK-")(XX'WHX) @n

where we have used Equation (AS). It is seen that the term discussed previously
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appears now in the flow law and the equivalence with regard to this aspect is dem-
onsirated.

The capability of TVBO to model rate dependence, creep and relaxation is not
emphasized in this paper. An indication of the influence of rate is given in Figure
2 where the stress-strain curves for two different stress rates are plotied. As ex-
pected the influence is smali. A companion paper, Yeh and Krempl {35]. consid-
ers the influence of creep periods during mechanical cycling and reports on
numerical experiments under cyclic temp:rature changes for some metal matrix
composites.
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APPENDIX 1

Matrices for Transverse Isotropy

It is assumed that the 3-direction is preferred. The symmetric elastic modulus
matrix C and the symmetric viscosi*y matrix K are then represerted by

1 = P12 = Pn ]
Ell Ell E)! 0 0 0
— Vi3 L llg]] 0 0 0
E,, E,, E;y
— V13 - P13 _|_ 0 0 0
E,, E., Es,

C' = (AD
1
0 0 0 G 0 0
0 0 0 0 A 0
Gae
0 0 0 0 L
L © Gur
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where we have used the notation of Reference [5] and where Geo = £,,/2(1 +

viz), and

1
Kll

=N
K

=M
K.
1

K = o0

=
——
=3
——

— N =M 0 0 0

K., K
! - N
K., k. ° 0 0
—s L g o o
KII KIJ
(A2)
1
0 0 -1'(: 0 0

1
K

with Ky = Ki./2(1 + n2). The pusitive decreasing viscosity function k(T"],
dimension of time, contrcls the rate dependence together with the direction-
dependent viscosity factors K,,, dimension of stress.

The constant elastic Poisson’s ratio based on rates for loading in the i-direc-

tion is
€'
vy = =
similarly
€
Ny = = é_f.'

(i.j=123,i=%})) (A3)

Gj = 123,i #j) (A4)

is the constant inelastic Poisson’s ratio based on rates for loading in the i-direc-
tion. From these the actual Poisson's ratio can be calculated (see Reference [22]).

The overstress invariant " is

(r*=XHX (AS)
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where X = o — g1s the overstress. H is a dimensionless matrix, given by

HII Hll Hu 0 0 0
H, H, H, 0 0 0
- Hl.l Hll Hl.l 0 0 0
H=1%" 9 0 H. 0 o0 (A6)
0 0 0 0 Ha. 0
0 0 0 0 0 H,

where Hu = Hu - OSH“.
The rate-independent invariant is () = Z' P Z, where P = (A'YP.A™".
The representation of P, is analogous to H, and the diagonal matrix A is

given by

(A7)

coococo>
cococo2>o
coooo
coPooco
opoocoo

cococoo

Au

where A,, (no sum on i, i = 1,3,4,6) is the difference between the equilibrium
stress (g,,) and the kinematic stress ( f,,) in the asymptotic state.
The coefficient of thermal expansion vector is a

a' =[a, a a 0 0 0) (A8)

All components are material properties which must be identified for a given
material.

Reduction to Isotropy

All directions in an isotropic body are equivalent. There are two independent
elastic moduli, two independent inelastic moduli (for example, one viscosity fac-
tor and one inelastic Poisson’s ratio), two shape functions, one tangent modulus,
and two isotropic invariants. Thus, E,, = E;; = E, Gu = G = G, and
via = v¥,; = by, = vareused in Equation (Al) together with G = E/2(1 + »).
Similarly in Equation (A2) K\ = K3 = K, Kuu = Ko, and 93 = 9, =
7, = n with K¢ = K33/2(1 + n). In Equation (A6) the reductions H,, = H,,,
Hi = He. and H,; = H,, with H,; = H,y — 0.5H hold, and A\, = A,,,
A« = Ae in Equation (A7). If in addition T in Equation (AS) is to reflect in-
variance under superposed pressure then 3H,, = Hy = 3. In this case the usual
J, invariant results. Finally there is only one coefficient of thermal expansion in
Equation (AB).
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APPENDIX 2

Shape Functions gq,, ¢;, and p
The modified shape functions q.. ¢; and p are defined as

_ ¥l _ ¥ufl) _ ¥uITl _ ¥iT)
‘= Tk, Enw = Ew = Eu

(A9)

_¢ull] _ 6ull]l _ 6ull] _ ull]
=Tk T T Kn T Kk T K

(A10)

The shape functions ¥,,[I"] and ¢.[I"] (no sum on i), have the dimensions of
stress. It is possible to set g, = g, = g which will be done in this paper. The
quantity p represents the ratio of the tangent moduli at the maximum inelastic
strain of interest £,.; to the viscosity factor K,, (no sum on i), and sets the slope
of the stress-inelastic strain diagram at the maximum strain of interest.

APPENDIX 3

Components of the Matrices in Equation (1)
For convenience the following quantities are defined

.E_u = C'E,’u + c~E~
L = v,E~ - v=E, (A12)
P = cvh + e

The nonzero components of the overall elastic compliance matrix C-* are us-
ing a generally accepted notation

=S ¢ £ o 200

— e — -1
El, = E~  ELE-E, (€

via ’= cle=L?
-1 = - y i [ Qe s, | -1
(C )ll (c ," + c E- + E(',E-E’J) (C )ll

€Y% === (CYhs = (TY = (T
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Ty = ——
( )Jl ) E,)
c’ c™
€N =GT + 5= = T
(C-I) - L’. + i 3
“ =G G- (Al3)

The nonzero components of the fiber viscosity matrix (K’)"* are (the argument
of the viscosity function k' is omitted)

Ky =

K’

(K"

K')n =

(K =

(K"Ya

(K'Y
Similarly for (K=)"*

(K=)i

(K=)ii

(K=)3}

[ c/e"Laby _ L,
Ki¥ ~ KGeE, - Kn
c(nla | cTLud\ _ .,
- k’(lﬂ. * xz,E,,) = &Da
¢/ [e"L p ot
KK ( E. "Jl) « (K')3
c’"élssl fr=1
I, 1 A 4
CIE';g
E, K5k
[ -
W = (K’)u
o’
KW
c* c’L .
= 1 +0S5 E.|= (K™}
—c" 'L -
=%\ E,,) = (K=
c” c’'L
=——[05 + F°) = &k=xt
K (05 E,,) K™%
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—c~E~

(K™ = m = (K™)3}

cmE~
E,, K=k~

(K™)5 =

3¢~

(K™t = el

= (K™)d = (K™)i$

The nonzero components of the “extra terms” (R')™' and (R®)"' are

. Ef fe~L . .
(R} = =cf E '), - (Ec,c),E (W ESs = vLES) = (RS
1§} 33 13

. . cle=L
(R))i} = [(E 1)’ ("nEn - y{lE{l) + (E{J)IEJQ

x

(i‘élE.’u - ".lnés.))] = (R’);=

(k/)ﬂ = E);En (l’uEn - VJIEM) (R’)-
(k’)ﬂ = E (”JIEJ: - VuEL) = (k’);;
ESsEss

. c’E

R =
( ))J EJ)E),

2/)-1 ’ é{‘ D7\t
R = —-c¢ (‘G_/“‘T; = (R')s
. G’
R = =<' Gy
E= clc™L

(R*)it = —c= ~E= - v"E") = (R")}

(E-)l (E-)XE (

l_.__:_ LY L . mEm _c_lL. Py .--
(R1} 1 =By (v-E v E)(l E”)-—(R )i

987

(Al5)

(Al6)
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‘-—

(R} = E—,Em.é- - imEy) = (R™)
. c” . . o
(Ro% = - (TER = vmET) = (R7)
- c=E~
Rll W= -
( )l) E.E.“
(k-)-l - _c- _G._._ = (k-)-l = (k-)-l (Al7)
(1] (G.)g a0 ss

Finally the overall coefficient of thermal expansion vector & is represented by

S 7L
(@) = ol + cmam - c; Lo - ab) = @n
33
(&), = (c’a}E%y + c=a™E™)/E,, (Al8)

(@) = (@)s = (@) =0

REFERENCES

. Krempl, E. 199. “An Experimental Smudy of Room-Temperature Rate-Sensitivity, Creep and

Relaxation of AISI Type 304 Sminless Steel,” Journal of the Mechanics and Physics of Solids.
27:363-375.

. Krempl. E. and H. Lu. 1983. “Comparison of the Siress Responses of an Aluminum Alloy Tube

to Proportional and Aliernate Axial and Shear Strain Paths at Room Temperature.” Mechanics of
Mazerials, 2:183-192.

. Kujawski. D. and E. Krempl. 1981. “The Rate (Time)-Dependent Behavior of Ti-7Al-2Cb-ITa

Titanium Alloy at Room Temperature under Quasi-Static Monotonic and Cyclic Loading.” Jour-
nal of Applied Mechanics, 48.55-6).

. Min, B. K. 1981. “A Plane Siress Formulation for Elastic-Plastic Deformaton of Unidirectional
Composites.” Journal of the Mechanics and Physics of Solids, 29:3271-352.

. Dvorak. G. J. and Y. A. Bahei-El-Din. 1982. “Plasticity Analysis of Fibrous Composites.” Jour-

nal of Applied Mechanics. 49:321-335,

. Dvorak. G. J. and Y. A. Bahei-El-Din. 1987. “A Bimodal Plasticity Theory of Fibrous Composite

Malterials.” Acta Mechanica, 69:219-241.

. Kenaga, D., J. F. Doyle and C. T. Sun. 1987. “The Characterization of Boron/Atuminum Com-

posite in the Nonlinecar Range as an Orthotropic Elastic-Plastic Maserial.” Journal of Composite
Muterials, 21:516-531.

. Teply. ). L. and G ). Dvorak. 1988 “Bounds on Overall Instantaneous Properties of Elastic-

Plastic Composites.” Journal of the Mechanics and Physics of Solids. 36:29-58.

. Dvorak, G. J., Y. A. Bahei-El-Din, Y. Macheret and C. H. Liu. 1988 “An Experimental Study

of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum Composite.” Journal of the Mechanics
und Physics of Solids, 6:655-68).

. Sun, C. T. and J. L. Chen. 1989. “A Simple Flow Rule for Charscterizing Nonlinear Behavior
of Fiber Compoasites,” Jowrnal of Composite Materials, 23:1009-1020.




Thermoviscoplasticity Based on Overstress Applied 1o Analvsing Compasites 989

20.

2L

23.

.

25.

26.

27

28.

. Min. B. K. and F W. Crossman. 1982. “Analysis of Creep for Metal Matrix Composites.” Jour-

nal of Composite Marerials. 16:188-203.

. McLean, M. 1982. "Creep Behavior of High Temperature Metwal Matrix Composites.” Furigue

and Creep of Composites Materials. Proceedings of the Third Riso Internationai Symposium on
Metallurgy and Materials Science, Ruskilde. Denmark. Riso National Lab.. pp. 77-88.

. McLean. M. 1985. “Creep Deformation of Metal-Matrix Composites.” Composites Sctence and

Technology. 23:37-52.

. Lilholt, H. 1985. “Creep of Fibrous Composite Materials.” Composites Science and Technology,

22:277-294.

. Min, B. K. and F. W. Crossman. 1982. “History-Dependent Thermomechanical Properties of

Graphite/Aluminum Unidirectional Composites.” in Composite Materials: Testing and Design
(Sixth Conference). ASTM STP 787, I. M. Daniel, ed.. American Society for Testing and
Materials. pp. 371-392.

. Dvorak. G. J. 1986. “Thermal Expansion of Elastic-Plastic Composite Materials.” Journal of Ap-

plied Mechanics, 53:T31-743.

. Wu, J. F., M. S. Shepherd. G. J. Dvorak and Y. A. Bahei-El-Din. 1989. “A Material Model for

the Finite Element Analysis of Metal Matrix Composites.” Composites Science and Technology.
35:347-366

. Bahei-El-Din, Y. A. 1990. “Plastcity Analysis of Fibrous Composite Laminates under Thermo-

mechanical Loads.” Thermal and Mechanical Behavior of Ceramic and Metal Matrix Compos-
ites, ASTM STP 1080, 1. M. Kennedy and W. S. Johnson. eds.. American Society for Testing and
Materials, pp. 20-39.

. Meyn, D. A. 194. “Effect of Tempemture and Strain Rate on the Tensile Properties of Boron-

Aluminum and Boron-Epoxy Composites,” in Composite Materials: Testing and Design (Thind
Conference), ASTM STP 546, American Society for Testing and Maserials, pp. 225-236.
Aboudi, J. 1982. “A Continuum Theory for Fiber-Reinforced Elastic-Viscoplastic Composites.”
International Journal of Engineering Science, 20.605-621.

Krempl, E. and B. Z. Hong. 1989. “A Simple Laminate Theory Using the Orthotropic Visco-
plasticity Theory Based on Overstress. Part [: In Plane Stress-Strain Relstions for Metal Matrix
Composites,” Composites Science and Technology. 35:53-74.

. Lee. K. D. and E. Krempl. 1991. “An Orthotropic Theory of Viscoplasticity Based on Overstress

for Thermomechanical Deformations;” international Journal of Solids and Structures, 27:1445-
1459.

Krempl. E. and K. D. Lee. 1988 “Thermal, Viscoplastic Analysis of Composite Laminates,”
Materials Research Society, Symposium Proceedings. 120:129- 136,

Lee. K. D. and E. Krempl. 1990. “Thermomechanical. Time-Dependens Analysis of Layered
Metal Matrix Composites.” Thermal and Mechanical Behavior of Ceramic and Metal Mairix
Composites, ASTM STP 1080, J. M. Kennedy and W. S. Johnson, eds.. American Society for
Testing and Materials, pp. 40-55.

Yao. D. and E. Krempl. 1985. “Viscoplasticity Theory Based on Oversiress. The Prediction of
Monotonic and Cyclic Proportionsl and Non-Proportional Loading Paths of an Aluminum
Alloy,” Imemnational Journal of Plasdcity, +:259-714.

Sutcu. M. and E. Krempl. 1990. “A Simplified Orthotropic Viscoplasticity Theory Based on
Qverstress,” Internarional Journal of Plasticity, 6:247-261.

Krempl. E.. J. J. McMshon and D. Yio. 1986, “Viscoplasticity Based on Overstress with Differ-
ential Growth Law for the Equilibrium Stress,” Mechanics of Materials, $:35-48.

Choi. S. H. and E. Krempl. 1989. “The Orthotropic Viscoplasticity Theory Based on Oversiress
with Static Recovery Applied 1o the Modeling of Long Term High Tempenture Creep Behavior
of Cubic Single Crysials,” Renmelaer Polytechnic Institute Report MML 89-3.

. Krempl, E. and D. Yao. [987. “The Viscoplasticity Theory Based on Overstress Applied 1o

Raichetting and Cyclic Hardening.” in Low Cycle Rutigue and Elasio-Plastic Behavior of Mate-
rials, K.-T. Rie. ed., pp. 137- U8




990 NAN-MING YEH AND ERHARD KREMPL

8

3t

32.

33

4.

3s.

. Krempl, E. and S H. Chot. In press. “Viscoplasticity Theory Based on Overstress: The Model-

ing of Ratchetting and Cyclic Hardening of AISI Type 304 Stainiess Steed” Nuclear Eng. und
Design.

Lee. K. D. and E. Krempl. 1991. “Uniaxial Thermomechanical Loading Numenical Expen-
ments Using the Thermal Viscoplasucity Theory Based on Oversiress.” European Journal of Me-
chanics. A/Solids, 10:175-194.

Dvorak. G. J. and M. S. M. Rao. 1976 “Axisymmetric Plasticity Theory of Fibrous Composites.”
Internanional Journal of Engineering Science, 14:361-373.

Krempl, E.. M. Ruggles and D. Yso. 1987. “Viscoplasticity Theory Based on Overstress Applied
to Ratchetting.” in Symposium on Advances in Inelastic Analysis, ASME Winter Annual Meeting,
Dec., 1987, S. Nakasawa, K. Willam and N. Rebelo, eds.. AMD -Vol. 88/PED -Vol. 28.
Krempl, E. and N. M. Yeh. 1990. “Residual Stresses in Fibrous Metal Matrix Composites. A
Thermoviscoplastic Analysis,” in Proceedings IUTAM Symposium on Inelasuc Deformation of
Compasite Materials. G. J. Dvorak, ed., Spnnger-Verlag, pp. 411-443.

Yeh. N. M. and E. Krempl. 1992. "A Numerical Simulation of the Effects of Volume Fraction,
Creep and Thermal Cycling on the Behavior of Fibrous Metal-Matrix Composites.” Journal of
Cumposite Materials. 26(6):899-914.




THE INFLUENCE OF COOL-DOWN TEMPERATURE HISTORIES
ON THE RESIDUAL STRESSES IN
FIBROUS METAL MATRIX COMPOSITES

Nan—Ming Yeh and Erhard Krempl

Mechanics of Materials Laboratory
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

RPI Report MML 92-2

April 1992

hbuccled o ] (owgponte 11t




ABSTRACT

The vanishing fiber diameter model together with the thermoviscoplasticity
theory based on overstress including a recovery of state formulation are introduced.
They are employed to analyze the effects of temperature rate and of annealing at
constant temperature on the residual stresses at room temperature when unidirectional
fibrous metal-matrix composites are cooled down from 1000°C during the
manufacturing process. For the present analysis the fibers are assumed to be
transversely isotropic thermoelastic and the matrix constitutive equation is isotropic
thermoviscoplastic including recovery of state. All material functions and constants
can depend on current temperature. Yield surfaces and loading/unloading conditions
are not used in the theory in which the inelastic strain rate is solely a function of
the overstress, the difference between stress and the equilibrium stress, a state
variable of the theory.  Assumed but realistic material elastic and viscoplastic
properties as a function of temperature which are close to W/9Cr-1Mo composite
permit the computation of residual stresses. Due to the viscoplasticity of the matrix
time-dependent effects such as creep and change of residual stresses with time are
found. It is found that the residual stresses at room temperature change considerably
with temperature history. The matrix residual stress, upon reaching room
temperature, is highest for the fastest cooling rate, but after thirty days rest the
influence of cooling rate is hardly noticeable since relaxation takes place. Annealing
pen’l?ds can reduce the residual stresses by more than 12% compared to continuous
cooling.

INTRODUCTION

Metal matrix composites consist of a ductile, usually low strength matrix
reinforced with elastic, brittle, and strong fibers. Ideally, the strength of the fiber
and the ductility of the matrix combine to provide a new material with superior
properties.  Selecting the best combinations of fiber and matrix materials is a
difficult task which involves conflicting demands and many compromises. To prevent
self stresses from developing during cool down from the manufacturing temperature, it
is desirable to have the same coefficient of thermal expansion for fiber and matrix.
This ideal, however, is seldom achieved as other considerations have priority in
selecting the constituent materials. Once different coefficients of thermal expansion
are given, residual stresses are inevitable. The question arises whether process
variables could be controlled so that residual stresses at room temperature could be
minimized. One such variable is the temperature history in cooling down from
manufacturing temperature. Intuitively, the rate of cooling and/or hold periods at
constant temperature should have an influence on the residual stresses. When the
temperature holds are introduced at high homologous temperature, high temperature
creep could reduce the residual stresses. However, no quantitative information is
available since experiments are costly and are not available for Ligh temperature
composites.

The residual stresses can, however, be obtained by analysis provided appropriate
constitutive equations and a composite model are available. The matenal model
must capture the time—dependent processes that take place at elevated temperature
such as primary, secondary, possibly tertiary creep, relaxation, and loading rate
dependence. In an early analysis, the complexity of the material model and the




available material data must be matched with the composite model; it is not
advantageous to combine a very detailed composite model with a constitutive
equation which does not capture the essence of real material behavior.

The viscoplasticity theory based on overstress with a static recovery of state
(VBO) can reproduce primary, secondary, and tertiary creep at stress levels which
are in the quasi-linear region of the stress—strain diagram; it also models loading
rate sensitivity and relaxation. While these phenomena are built into the
constitutive equation, specific materials are modeled by identifying the constants of
the theory by appropriate tests reflecting the time(rate)-dependent behavior of the
matrix (in general, the fiber is modeled as linear elastic but this is not a
requirement of the theory).

In principle then, VBO cannot be applied since the time(rate)-dependent
material properties of the matrix are not known. For high temperature composite
matrices even stress—strain diagrams are not always available. Since VBO presents
the above phenomena, the specific material properties are not important when general
trends are being explored. =~ To demonstrate the potential of the analysis, a
hypothetical composite was created analytically. From a theoretical and experimental
investigation at 538°C for a modified 9Cr-1Mo steel used in the power generation
industry, the VBO model was available at that temperature. It was then natural to
take advantage of this work and a W/Cr-Mo hypothetical composite was created
analytically which is called MMC3. The temperature dependence of the mechanical
properties of the matrix were established by reasonable guesses.  The elastic
properties of the W fiber were obtained from the literature (IIJ. This material model
was then combined with the Vanishing Fiber Diameter Model (VFD) [2] in a
thermoviscoplastic analysis. The theory is applicable for arbitrary thermomechanical
loadings and is specialized here to the cool-down process in the absence of external
loads. Although the results are strictly valid for MMC3 only, it is believed that the
general trends are indicative of matrix materials whose strength decreases and whose
time:irate)—dependent properties increase with an increase in temperature. (The
trends may be different for some Nickel Aluminides which exhibit a strength increase
with temperature before it decreases and whose time(rate)-dependent properties are
largely unknown.)

In previous papers, analyses were performed using a version of VBO without
the static recovery terms in the growth laws for the state variables. As a
consequence, only "cold creep" was reproduced. It is shown that the residual stresses
have an influence on the subsequent mechanical behavior as well as the thermal
expansion behavior of metal matrix composites [3-5].

All the analyses reported in [3—5] were for VBO, which showed only primary
creep for the matrix at stress levels corresponding to the quasi linear region of the
matrix stress-strain diagram. It is known from the high temperature creep behavior
of monolithic materials that, in these regions, secondary and tertiary creep can occur.
To model such behavior, a static recovery of state term must be introduced in the
rowth law for the state variables following the Baily/Orowan concept of
ardening/recovery competition in secondary creep. This has been done by Majors
and Krempl [6] for modified 9Cr-1Mo steel. It is shown that secondary creep in the
quasi elastic regions can be reproduced together with other phenomena found in the




experiments by Ruggles, Cheng, and Krempl [7]. These experiments include strain
rate changes and repeated relaxation tests at 538°C.

The VBO model based on these experiments represents real high temperature
behavior. It is the matrix conmstitutive equation in MMC3. The analysis shows the
effects of temperature rate and of annealing at constant temperature durin
cool-down on the residual stresses at room temperature. The effect of recovery o
modified 9Cr-1Mo steel during cool down is considered to be temperature—dependent
and the transition from low to high homologous temperature behavior is characterized
by a decrease in strength and a decrease in rate(time) dependence. No recovery of
state takes place below 450°C.

First, the governing equations are stated. They are represented by a system of
first order, nonlinear, coupled differential equations which must be solved for a given
boundary condition and loading/temperature history. In this case, no mechanical
loading with various cooling histories are simulated numerically. The model also
includes cold—creep and changes of the residual stresses with time are observed at
room temperature. It is assumed that perfect bonding starts at 1000°C and holds
during the cool-down process.

THE COMPOSITE MODEL
Experimental Evidence of Deformation Behavior Influenced by Recovery of State

Evidence of recovery of state influencing the deformation behavior was presented
by Ruggles, Cheng and Krempl [7] and discussed and modeled using VBO by Majors
and Krempl (6]. Figure 1, taken from {7], shows the rate dependence of modified
9Cr-1Mo steel at 538°C. The stress level depends strongly on strain rate and the
material exhibits strain softening. Of interest is the curve with the lowest strain
rate which had relaxation periods introduced at points A, B and C. Due to the
slow straining and the extended relaxation periods, the specimen was exposed to the
elevated temperature environment for more than 140 hrs before straining resumed at
C with a strain rate of 1.2E-5 1/s. The observed gap between this curve and the
one for which the strain rate was 1.2E-5 1/s from the beginning (the total test
duration for this test up to 4.8% strain was approximately 1.1 hrs) is attributed to
the influence of static recovery as is the rate—dependent neﬁatxve slope of the
stress—strain curves in the inelastic region. Further evidence of the influence of static
recovery is the cyclic softening of the initially annealed steel shown in Fig. 2. The
hysteresis loops with relaxation drops at the first and at the 52nd cycle are shown in
Fig. 2. These and other evidences of the influence of static recovery combined with
the usual rate dependence, creep, and relaxation behavior are reported in (7] and
modeled with VBO in [6].

A Thermal Version of the Viscoplasticity Theory Based on Overstress with Static
Recovery of State.

The theory and the modeling given by Choi [8] and Majors and Krempl [6] is
modified slightly to allow for the modeling of thermal behavior. This includes the
addition of a temperature rate term and allowing the material constants to depend
on temperature,




—\\

For the representation of the equations, the usual vector notation for the stress
tensor components o and the small strain tensor components € are used. Boldface
lower and upper case letters denote 6 x 1 and 6 x 6 matrices, respectively.

In the context of an infinitesimal theory, the total strain rate, de/dt, is
considered to be the sum of elastic, de®!/dt, inelastic, dei"/dt, and thermal strain
rates, de*®/dt,

e= ¢+ &+ (1)

For each strain rate, a constitutive equation is postulated. The elastic strain is
assumed to be independent of thermal history, therefore,

d /-

e = HT(C 10) (2)
where C! is the temperature dependent compliance matrix, and a superposed dot
represents the total time derivative, d/dt. .

The inelastic strain rate is only a function of the overstress x. It denotes the

difference between the stress o and the equilibrium stress g, a vector state variable
of the theory. Accordingly

e = K'x (3)

The viscosity matrix K™ controls the rate-dependence through the viscosity
factors K;; and the positive, decreasing viscosity function k[['}. The components of

K for isotropy and incompressibility are given in Appendix 1.

The thermal strain rate is given by

e = of (4)

with a the coefficient of thermal expansion vector. T is the temperature difference
from some datum temperature.

The growth law for the equilibrium stress with a temperature term and a term
representing static recovery is

6= drAle + )+ 1 Gty - ALAE=Buey - mimlg )

where
I’ = x*Bx, ¢* = (é9)'Qe™, =’ = g'Hg

and x=o0-g, z=g-1{




The viscosity function k[I'] and the dimensionless modified shape functions q[I',A] are
decreasing (q[0,A] < 1 is required) and control the rate dependence and the shape
of stress-strain diagram, respectively. (Square brackets following a symbol derote

"function of".) T is the overstress invariant and ¢ is the rate of inelastic strain
path length. E; is the tangent modulus at the maximum strain of interest and can
be positive, zero, or negative. The vector s represents the difference between the
equilibrium stress g and the kinematic stress £ H and Q are dimensionless matrices.
For isotropy, their components are chosen to yield the von Mises effective stress and
inelastic incompressibility, see Appendix 1. The recovery function R is positive and
iie;iends upon the current effective equilibrium stress x, see Cernocky and Krempl
17],

R[] = 28%tanh(UG) + tanh(VG)] (6)
where

UG = -3 + 6(—"—RGy vg = 3 4+ 6"+ RGy)

RGy, RG; and RG; are temperature-dependent material constants.
To model recovery induced softening, the recovery variable A is taken to be

A= hp -7 (7)
where

f#=h¢ - Rynln, and p = [, ¢dr.

In Eq. (7), p is the accumulated inelastic strain, and h is a dimensionless positive

constant. The variable n grows proportionally to the effective inelastic strain rate, @,
but recovers by the function R, R, is same form as R with different constants
called RA,;, RA; and RA;. The isotropic variable A is influenced by A

A=B+ Ae-B (8)
1 -G,

where B is the minimum value of A, A, is the initial value, and G, is a positive
dimensionless material constant.

To improve modeling, the kinematic stresses and the shape function are
modified and are made to depend on A

f= Bt oA -B (9)
1_%& AO-B

The modified shape function q[I',A] = ¢l,A]J/E with ¢, a positive decreasing
function of T' is




¥C,Al= ¢ + (cofA] ~ ciexp(~cal’) (10)

where

Cz[A] = E .
Ao(Efcao = 1) +1
Aexp(c«(A ~ Ap))

Cz0 is the inivizi value of ca.

The capabilities of Eqs. (1-10) for modeling the material behavior include

Stress level dependence on strain rate; recovery term decreases stress at slow
rates.

Primary, secondary and tertiary creep possible in quasi-elastic range.

Qualitative modeling of relaxation drops and stress levels at the end of
relaxation tests.

Strain rate path dependence.

Cyclic softening.

Small permanent effect of rest time on subsequent stress-strain diagram.

Tangent modulus in the inelastic range decreases with decreasing strain rate.

The details can be found in [6]. All constants can depend on temperature and this
dependence is nc* explicitly displayed.

The Composite Model

For MMCS3, it is assumed that the fiber of the unidirectional composite is
transversely isotropic thermoelastic, the matrix is isotropic and thermoviscoplastic
with recovery of state and represented by Eqs. (1-10). Fiber orientation in the
3-direction is postulated.

For the VFD model, Dvorak and Bahei-El-Din [2], the ivilowing constraint
equations hold

o = ol = 0% for i3 3

oy =Cf&§+c.b’

g =c el +c® e for i43 (11)
&gs = e = €L

In the above, stresses and strains without a superscript designate quantities imposed
on the composite as a whole. Superscripts f and ® denote fiber and matnx,
respectively. The fiber volume fraction is ¢f and c® demotes the matrix volume
fraction witu ¢f + ¢® = 1. When the constraints [11] are combined with the VBO
equations of Lee and Krempl {9], the composite response is given by (details can be
found in Yeh and Krempl [10,13))

¢ = Tl + (K®)'x* + (RN + (R")0™ + @b (12)




together with a separate equation for the o3 component of the matrix

{E‘k—:[—r"_] [xs - 0.5(x1 + xs)]}

cEf,E" 1 . )
) E3: {[(Esa)’\U§‘E§3 - hiEl)

I N , Ef, _ E®
(-é:)-;(u-E AR )](a, + 03 + (Eis)’ag (E')’d

[

- CELE% o _ ofyt. (13)
Ess

In addition, the growth laws for the state variables described previously are needed.

In the above, T™! is the symmetric overall compliance matrix whose components
are functions of the elastic properties of fiber and matrix. The viscosity matrix

(K®")! is not s etric and its components, together with those of T, are listed in
Appendix 1. (Note, the matrix material is assumed to be isotropic and inelastically

incompressible.) The matrices (Rf)" and (R®) contain time derivatives of the
elastic constants of the fiber and the matrix, respectively. Both matrices are not
symmetric, see Appendix 1. They are zero if the elastic constants are independent of
temperature. These matrices represent the "additional" terms which can play a
significant role in modeling thermomechanical behavior, see Lee and Krempl {11].

Finally, the components of @ are composed of the elastic constants and the
coefficients of thermal expansion, see Appendix 1.

Equation (12) shows that the overall strain rate is the sum of the overall
elastic strain rate, the overall inelastic strain rates contributed by the matrix, and
the overall thermal strain rate in the case of constant elastic properties.
temperature dependent elastic properties are assumed, then two additional terms
contribute to the overall strain rate. They insure that the elastic behavior is path
independent, see Lee and Krempl [11].

Equation (13) is used to calculate the instantaneous axial matrix stress which
cannot be directly obtained from the overall boundary conditions. Esy and L are
defined in Appendix 1. o9 is affected by mechanical and thermal loadings and their
loading paths. For instance, for pure thermal loading (overall stresses are zero), o%




together with g?, % will develop due to the difference in the coefficients of thermal
expansion of fiber and matrix; these matrix stresses in the fiber direction cause
coupling between the mechanical and thermal loading in the inelastic range.

NUMERICAL SIMULATION

Equations (1) through (13) comstitute the model which must now be applied by
specifying the boundary conditions and the uniform temperature history. In this
paper we assume no overall stresses. Stresses arise when the temperature changes
due to the different coefficients of thermal expansion for fiber and matrix. The
properties of MMC3, a hypothetical unidirectional composite made of a modified
9Cr-1Mo steel matrix and W fibers are listed in Tables 1 and 2, respectively. The
matrix properties give rise to the stress-strain diagrams shown in Fig. 3 at the
indicated strain rate. A decrease in stress level with temperature is modeled. Long
term creep curves at 538°C and 600" C at stress levels within the elastic range of the
stress~strain curves in Fig. 3 are depicted in Fig. 4. It is seen that primary,
secondary and tertiary creep are modeled. This capability is due to the recovery
terms described previously. In the model it is assumed that static recovery is
unimportant at temperatures below 450°C and only "cold" creep can be modeled
below this temperature. Even at room temperature cold creep is found [12] which
can give rise to residual stress changes while the composite is at rest at room
temperature. Room temperature time—dependent behavior has been found in
composites [15].

Residual Stresses upon Cool-Down from Manufacturing Temperature

The residual stresses at room temperature might be influenced by the cooling
history. As a consequence, numerical experiments were performed involving the
thermal histories listed in Table 3. They include continuous cooling at different
temperature rates, Cases 1-3, change of temperature rates, Cases 4-6, and
temperature holds at 600°C or at 800°C with rate changes, Cases 7-12. The results
are graphed in Figs. 5-9.

The increase in the matrix stress in the fiber direction o3 and of the

equilibrium stress g% in that direction with decreasing temperature is shown in Fig.
5. When the composite reaches room temperature at point b, relaxation sets in and
the stress decreases while the equilibrium stress increases. As seen from the inset,
the overstress, the difference of the stress and the equilibrium stress, decreases with
time. After 30 days, the overstress is small and relaxation ceases for practical
purposes. The residual stress which would be measured in a real composite would be
close to that of point c since it takes some time before the composite can be tested.
The stress redistribution at room temperature is caused by the presence of cold
creep, i.e. the rate dependence of the matrix at room temperature found in alloys
[12] and composites [157.e

The influence of cooling rate is shown in Fig. 6 where only the matrix stress is
plotted. Upon reaching room temperature, the stress is highest for the fastest cooling
rate. It would appear then that a slow cooling rate would be beneficial. However,




the results in Table 4 show that the residual stresses after 30 days differs only by
about 3 MPa. During the hold at room temperature, the relaxation is faster for the
high than for the slow temperature rate so that the initial difference of 30 MPa
between Cases 1 and 3 diminishes to 3 MPa. It is concluded that the final stress is
nearly unaffected by the cooling rate.

The temperature rate changes do not appreciably alter the picture, see Fii.‘ 7
and Table 4. It is, however, clearly noticeable that a slow cool in the igh
temperature region has a beneficial effect on the residual stresses, compare Cases 4
and 6 with Case 5.

It can be seen from Table 3 that the difference between Cases 7-9 and Cases
10-12 ig the length of the temperature hold. The 30 day hold for Cases 7-9
produces up to 10% lower residual stresses than the one day hold, Cases 10-12, see
Table 4. The lowest residual stress is found for Case 8 (Case 7 differs only by 1
MPa) with a hold at 600°C and fast cooling rates. When temperature holds are
introduced at 800°C rather than at 600°C, the residual stresses are hish, compare
Cases 7 and 8 and Cases 11 and 12. The introduction of 30 day hold periods at
600°C is very effective and leads to the lowest residual stresses. It is also seen from
Fig. 8 and Table 4 that using slow cooling to 600°C has no effect on the residual
stresses. Figure 8 shows that the slow and the fast cooling rate curves relax to the
same stress at the end of the 30 day hold at 600°C and that subsequent coolin%
starts from the same stress level. The situation is different for the one day hold o
Fig. 9 for Cases 10 and 11. The fast cooling rate curve relaxes mot quite as far as
the slow one and the beneficial effect of slow cooling to 600°C is noticeable in the
residual stress level, 204 vs 208 MPa. Comparin éasa 6 and 10 shows that the
introduction of a one day hold has a very minor efect on the final residual stresses.

DISCUSSION

A composite model based on a "unified" viscoplasticity theory, the
thermoviscoplasticity theory based on overstress (VBO), and the vanishing fiber
diameter model (VFD) were used to analyse the effects of temperature rate and of
annealing at constant temperature on the permanent residual stresses at room
temperature. It was assumed that the unidirectional fibrous metal-matrix composite
MMC3 was cooled down from 1000°C during the manufacturing process. Material
properties based on a real alloy were used to create the hypothetical MMC3. Of
special interest was the effect of recovery of state representing high temperature creep
in the constitutive equation.

In a companion investigation, Yeh and KremplAIIG], no recovery of state was
included in the simulation of the behavior of Gr/Al. ~ The same 12 Cases were
computed and it was shown that the residual stresses at room temperature and long
times differed by less than 3% for all 12 temperature histories. The present analysis,
which includes high temperature creep, shows that there can be as much as 36 MPa
difference in the final residual stress. As expected, the lowest residual stress is
achieved with Case 8 which involves a 30 day hold at 600°C. It may be impractical
to use such a history. Case 6, which involves slow cooling to 600°C followed by fast
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cooling, is a cooling path whick is practically feasible. It takes about 4.8 days as
opposed to 30.3 days for Case 8. The results clearly show that an optimum path
mdb:l found and that high temperature creep has a beneficial effect on the final
residual stress.

The residual stresses immediately after reaching room temperature range form
251 to 209 MPa, a 20% difference. These stresses relax with time spent at room
temperature due to the presence of cold creep which has been observed in Al based
metal matrix composites {15]. Since experiments have shown that cold creep is
present with ferritic steels at room temperature (14], we have built it into the
present model. Cold creep gives rise to the observed relaxation which is nearly over
after 30 days. Cases 1-3 show that at the end the influence of rate is negligible
since the final residual stresses are nearly idemtical. This observation corresponds to
the results of a companion investi?a.tion without recovery of state [16] where
temperature history effects are negligible after 30 days.

When extended periods of time are spent at temperatures where the influence of
recovery of state is significant, its influence on the final residual stress is noticeable.
Ho;vever, the overall effect is not very large since the final stresses differ only by
18%.

Therefore, it appears therefore that variation of the thermal history does not
have a very significant effect on the final residual stresses. However, it is clear that
recovery of state or high temperature creep can be useful in reducing residual
stresses. Holds in regions where recovery of state are significant are most beneficial.
Since recovery of state is a long-term process, the beneficial effects can only be
expected after long cooling times.

The present paper intends to show the capabilities of the proposed analysis in
principle using a hypothetical composite MMC3. For the exact modeling of a metal
matrix composite, various refinements are possible. Included are the determination of
matrix and fiber properties as a function of temperature and the use of other
micromechanical models. While the magnitude of the residual stresses are strongly
degfndexét on the specific system, the general trends are expected to remain
unaltered.
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APPENDIX 1
Matrices for Isotropy

The nonzero components of the symmetric elastic modulus matrix C? and the
symmetric viscosity matrix K™! are

(CHu = (CNa2 = (Css = 1/E
(CNuu = (C)ss = (C)gs = 1/G
(CMij = —/E, i, j=1,2 3 andi# (A1)

(K = (K32 = (K)gs = 1/EK[T)
(KN4 = (K55 = (KT)gs = 3/EK[T]
(K = -1/2EK["), i, j=1, 2, 3, and i # j (A2)

The coefficient of thermal expansion vector is

a=[aaal00 (A3)

H and Q are dimensionless matrices. @ For isotropy and independence of
superposed hydrostatic terms the nonzero components are

Hyy = Hypp = H3y 1, Hyy = Hys = Hepg = 3

H;; = 05,1, j = 1, 2, 3, and i#j, (A4)
and
Qu=Q2 =Qu =1, Qu = Qs5 = Qes = 1/3
Qi = 05,1, j =1, 2, 3, and i#j, (A5)
respectively.

Components of the Matrices in Eq. (12)
For convenience the following quantities are defined
Eiq = cfESS + c“E"

L = J{,E* - ,El, (A6)
vy = cfd; + 2 .




14

The nonzero components of the overall elastic compliance matrix T are

f n f.m72
T LI - s e T (o
(CTHu o "B EREEs (T2

a f IL2
(T = 2 4+ oy £2) = (T
! Ef, E* E{E"Ess

(T = %1 = (TYa = (CHs = T (A7)
33
U" = ._.:!'—
(TMss Eun
(C Y = et Lt (T
¢l G
_ f c-

THes = — + — -
(Cee e

The nonzero components of the matrix (K®=)! are (the argument of the

viscosity function k® i5 omitted)

(K = =1 + 055) = (K3

K*k"* Ess
N = —® - E—tl =(K")2
(K"t ;f-]—;(l E;;) (K™l
(K™t = =505 + Ly (k") (A8)
K"k* Ess
it = <EL _(k®);
(K™l Bk (K™)3}
8\l = c*E*
(K )d E;;K'k-
®il = == = (Kl = (Kt -
K"k*




The nonzero components of the "extra terms" (Rf)* and (R®) are

(A9)

Sfv-l E fnL (s . <o
(ROl = -cf(Eg)z - Ak - k) = (R0
sty = _ (¢ o e L tet - Ak = (RO
(R)i} = [Wﬁzl‘){x aEl) + m {,Efs V§1E§3)] = (Rh)3l
(R = éé;@,ﬁ:s, ~ #Ey) = (Rl
(ROl = T“—M,Esa ~ SKiEf) = (B3}
3533
Rf)3l = - AT
(R Ef;E;s
anv:) — _of Gl _ (N
(RNl -c(Gh)’ (RN)sd
(Rif = 'Sl
(Ghs)?

and
TN -El cfc'L [iapm _ cay — (RE):
(R0l = 205 o+ SRR - ) = (R
1 3% = c" R _ REE _ ch = S\ -
(R™)7 (—W(V'E E®")(1 E_;; (R™)il

(B} = Ef;:,-s;(valﬁ- - "Ey) = (R™3

amyof = _C" b _ cape) = (R%):
(R%);sl E;E;(V"E #E") = (R7)3
c"E"
E"Ess

nmy-l — IG. /Rl — (R®\:
(R*)sl = —< G =(R")il = (R")s} .

(R")sd = -

(A10)
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Finally the overall coefficient of thermal expansion vector @ is represented by
f cfc®L
(@), = cfol + 6"0"—5-(0'-09 = (@)
33
(A11)

(@)s = (cfalEfs + c*a®E")/Ess
(@¢ = (@)s = (a)s = 0.
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Thermoelastic and Thermoviscoplastic Properties of Modified 9Cr—1Mo Steel

Matrix (MMC3) with Temperature-Dependent Recovery Function (*)

(]

Km
k[T

ks

Ci

C20
C3

C4

G,

= 237160-172.5T+0.31T%-3.43e4T3+1.1e-7T* (MPa) 208 < T < 1273°K
= 01572.1-68.924T+0.1261T%-1.386e4T*T4.421e-8T*4 (MPa) 208 ¢ T ¢ 1273°K
= 6.e-6+2.37e~8T-3.78e-11T?+3.2e~14T%-9.2e-18T*(m/m/°C) 298 ¢ T ¢ 1273°K
= E

= k(1 + {_2)-1‘3(1 + exp(ks(T' - kq)))

= 2e+6 (s), ko = 250 (MPa), ky = 380 (MPa), ks = 0.01 (1/MPa)

= 42.061-6.061e-2T (1/MPa) T ¢ 364°K

= 98.99-0.5775T+1.525e-3T*1.723e—6T3+6.968e-10T* 364 < T < 873K
=-18.7271+0.0446625T—6.25e—6T? T > 873°K

= —6214.62+126.257T-0.2754T2 (MPa) T < 364°K

= 11939.9-43.437T+4.742e-2T%+4.461e-5T3-7.4763e-8T* 364 < T < 811°K

= 17624-33.236T—6.185e-3T+3.76e-5T3-1.689e-8T* T > 811°K

= 579.276-1.1393T+9.886e-4T2+2.111e-6T3-2.833e-9T* T < 873°K

= 304.391-0.34325T+1.25e-4T? (MPa) T > 873°K

= Y/E; see Eq. (10)

= 137212-212T (MPa) T < 364°K
=304327-1770.68T+4.662T-5.283e—3T3+2.123e—6T* 364 < T ¢ 873°K

= 50231.8-1.35T-0.025T2 T > 873°K
=228189-122.1T+0.1728T%-1.837e4T3+4.416e-8T* (MPa) 298 < T ¢ 1273°K
= 2.424e-3+7.576e-5T (1/MPa) T ¢ 364°K

= 0.6561-4.978e-3T+1.429e-5T-1.751e-8T3+7.831e-12T* 364 < T ¢ 873°K

= —0.3365+0.0005T T > 873°K

= 0.5 (1/MPa)

=0 T < 723°K

= 208.534-1.244T+1.896e-3T?-1.225e-6T3+2.883e-10T* T > 723°K

=0 T < 723°K

= 208.534-1.244T+1.896e-3T2-1.225e~6T*+2.883e-10T* T > 723°K

= 398.3-0.713T-8.546e—4T?+4.42e-6T%-3.504e-9T* (MPa) T ¢ 873°K

= 64.92-0.04T T 2 873°%K
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Table 1. (continued)
RG, = 0 (MPa) 208 < T < 1273°K
RG; = -589.57+12.04T—4.32e-2T2+6.15e~5T3-3.07e-8T* (MPa) T < 873°K
= 209.125-0.125T T > 873°K
RG; = 0 (1/s) T < 723°K
4.1e-4-1.79e—6T+2.83e-9T%-1.95e-12T3+4.967e-16T* T > 723°K
RA; = 0 (MPa) 298 < T < 1273°K
RA; = 273.19-0.547T—4.8e-4T%4+2.55e-6T3-1.906e-9T¢ (MPa) T < 873°K
= 122.196-0.1716T+6.25e~5T? T 2 873°K
RA; = 0 (1/s) T < 723°K
4.1-1.785e-2T+2.829e~5T2-1.95e-8T3+4.967e~12T* T > 723°K
v = 0.3, and inelastic Poisson’s Ratio: 0.5
¥ Estimated




Table 2. Thermoelastic Properties for W Fiber*
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Ef; = Ef; (MPa)
vy

G£4 = GSG (MPa)
of = of (m/m/°C)

410920-40T

0.29

159271-15.5T
4.198e—6+8.87e-10T

298
298
208
298

IA IA IA A

_H a3
IA 1A IA 1A

1273°K
1273°K
1273°K
1273°K

*From [1].




Table 3. Thermal Histories Used for MMC3

Case

-3 €O D) =

10

11

12

Description

Continuous
Continuous
Continuous

Rate Change
(at 450 °C)

Rate Change
(at 450 °C)

Rate Change
(at 600 °C)
Temp. Hold
(at 600 °C)
Temp. Hold
(at 600 °C)
Temp. Hold
(at 800 °C)

Temp. Hold
(at 600 °C)

Temp. Hold
(at 600 °C)

Temp. Hold
(at 800 °C)

Cooling Rates °C/s

0.1
0.033
0.001

0.001/0.033

0.033/0.001

0.001/0.033

0.001/0.033

0.033/0.033

0.033/0.033

0.001/0.033

0.033/0.033

0.033/0.033

Hold Duration (Days)

No
No
No

No

No

No

30

30

30

X}




Table 4. Matrix Residual Stress for the Thermal Histories of Table 3
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Case 1 2 3 4 5 6
o} (MPa) i)* 251 242 220 231 230 232
a)* 217 216 214 207 224 206
Case 7 8 9 10 11 12
0% (MPa) i)* 210 209 225 229 234 239
in)* 189 188 200 204 208 213

* Results in rows (i) and (ii) represent the residual stress immediately after reaching

room temperature and after 30 days at room temperature, respectively.
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FIGURE CAPTIONS:

Fig. 9.

Rsasteca.nd strain rate history dependence of modified 9Cr-1Mo steel at
538°C.

Cyclic loading with repeated relaxation periods of modified 9Cr—1Mo steel
at 538°C. Cydlic softening is indicative of recovery of state.

Stress—strain diagrams of MMC3 matrix at various temperatures.

Long term creep curves of MMC3 matrix at stress levels within the
elastic range of the stress-strain curves in Fig. 3 at 538°C and 600°C.

Development of matrix stress in fiber direction, and matrix equilibrium
stress during cool-down from the assumed manufacturing temperature of
1000°C. The inset shows the decrease of the overstress during the room
temperature hold b~c. MMC3 '

Matrix residual stress developed during cool down of MMC3 from the
assumed manufacturing temperature at 1000°C. The influence of cooling
rate is apparent. After a hold of 30 days at room temperature the
smallest residual stress of 214 MPa is obtained a cooling rate of
0.001°C/s. The model shows stress relaxation at room temperature.

The effects of cooling rate change on the matrix residual stress at room
temperature. The final residual stress for Case 4 is 207 MPa, compared
to 224 MPa for Case 5.

Influence of cooling rate and 30 days temperature holds at 600°C or at
800°C on the matrix residual stress at room temperature. In this case
the lowest residual stress is 188 MPa for Case 8 about a 14% reduction
compared to Fig. 6.

Influence of cooling rate and 1 day temperature holds at 600°C or at
800°C on the matrix residual stress at room temperature. In this case
the lowest residual stress is 204 MPa for Case 10.
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ABSTRACT: An incremental multiaxial life prediction law (IMLP) is proposed which consists
of the three-dimensional thermoviscoplasticity theory based on overstress (TVBO) combined
with a multiaxial damage accumulation law (MDA) to compute the life-time or cycles-to-crack
initiation. Crack growth is not considered in this paper but is needed to ascertain the useful life
of a component. The method is intended for application to high temperature low-cycle fatigue
with and without hold times and for triangular and trapezoidal waveforms when creep-fatigue
interaction takes place.

The deformation behavior is determined by solving the coupled differential equations of
TVBO for the strain variation of interest, i.e. continuous cycling, hold times or fast/slow or
slow/fast loading. Only the cyclic neutral version of TVBO is used here although cyclic
hardening and recovery of state formulations are available.

The incremental damage accumulation law consists of a fatigue and a creep damage rate
equation. When the sum of creep and fatigue damage reaches one, crack initiation is said to
occur. The damage accumulation equations assume that the combined actions of stress and
inelastic strain rate contribute to damage and damage evolution does not influence the
constitutive equation. Fatigwe damage always accumulates but a negative creep damage rate is
possible to allow for healing (creep damage is, however, always positive). In accordance with
scarce experimental evidence, the maximum inelastic shear strain rate, a hydrostatic pressure
modified effective stress as well as a parameter which depends on the multiaxiality of loading
are used in each damage rate equation. The multiaxiality loading parameter depends on
maximum inelastic shear strain rate for fatigue damage, while it is a function of maximum
principal stress for creep damage.

All material constants for TVBO and MDA are determined from isothermal tests on Type
304 Stainless Steel (SS) at 538°C using data of Zamrik [1], Blass and Zamrik (2], and Blass [3].
The damage accumulation law correlates fatigue life under biaxial (tension-torsion) cycling with
and without hold times. Only the results of one biaxial test series was available to compare the

generally favorable predictions (correlations) with experiments.




KEY WORDS: thermoviscoplasticity, multiaxial creep-fatigue interaction, thermomechanical

loading, 304 stainless steel, thermal fatigue

Introduction

The design of machines and devices for application in severe loading conditions such as
variable temperature, multiaxial stress state, variable frequency, hold-times with creep and
relaxation, is a problem of growing importance. The interrelationships between the thermal and
the mechanical deformation, between creep and fatigue, and between the multiaxial stress state

“and the failure mode are very complicated and need to be modeled.

Creep-fatigue interaction is a problem occurring in high temperature nuclear vessels, jet
engines, and steam and gas turbines due to temperature change such as startups and shutdowns
and has been widely studied. In simulated service testings components are subjected to periodic
sawtooth, trapezoidal, and other thermomechanical loadings, to study the time-dependent low-
cycle fatigue damage development. Significant time(rate)-dependent effects are found. The
analysis of the low-cycle fatigue life of these structural components must not only account for
the time (rate) dependency but also for multiaxiality of the stress state.

Most of the creep-fatigue interaction problems were investigated at isothermal, uniaxial
conditions. The z;pproachcs range from algebraic to incremental formulations. The former must
assume a typical cycle whereas arbitrary loading histories can be considered using the
incremental laws.

Coffin [4]) introduced the frequency-modified Coffin-Manson equation with redefined
frequency for hold-time fatigue tests to describe the low-cycle fatigue behavior under uniaxial
trapezoidal waveform loadings. To account for slow-fast, fast-slow wave form effects Coffin
[5] proposed the "frequency separating method", in which the tension-going frequency plays a
major role in the fatigue life computation. Manson et al. [6] developed the "strain range
partitioning” method to calculate the low-cycle fatigue life under uniaxial creep-fatigue

interaction. This method is then extended to the analysis of multiaxial creep-fatigue interaction




conditions {1,7].

Majumdar and Maiya (8] introduced an incremental life prediction law for uniaxial creep-
fatigue interaction. Later Majumdar extended it to a multiaxial version and correlated the biaxial
time-dependent fatigue life of 304 SS at 1000°F [9]). Krempl et al. [10] modified Majumdar and
Maiya's [8] law. Essentially, plastic strain was replaced by stress. This new law was combined
with the viscoplasticity theory based on overstress (VBO) [11] to correlate and predict the low-
cycle fatigue lives under uniaxial creep-fatigue interaction conditions.

Usually these approaches are isothermal and are applied to thermal fatigue by considering
only the highest temperature (usually the worst). Unfortunately thermomechanical fatigue
experiments [12] can exhibit a much lower fatigue life than those found at the highest
temperature of the cycle under the same mechanical loading. Extension of life prediction to
variable temperature conditions requires that material properties be introduced as a function of
temperature and that the effects of thermal expansion be properly recognized. One such
approach will be presented below.

Life prediction laws which lend themselves naturally to the evaluation of the life spent under
variable loading are those formulated in incremental form [8,10,13]. By virtue of their
incremental nature they can be integrated for any stress or strain path and give an indication of
the life used up under such paths. In the case of periodic loading, only one cycle needs to be
considered as in the case of algebraic laws.

Due to the path dependence of the inelastic deformation of metals, material models for the
prediction of deformation must also be formulated in an incremental fashion. Such an
incremental formulation couples naturally with an incremental life prediction law. However, it
is also possible to integrate the constitutive equation for a certain typical cycle, to plot the results
in terms of stress versus strain and to determine the quantities of interest for algebraic life
prediction laws from the calculated hysteresis loops instead of from the experimental ones.

The purpose of this paper is to inttoduce an incremental multiaxial life prediction law

(IMLP) for multiaxial creep-fatigue interaction under thermomechanical loading. IMLP consists




of the three-dimensional thermoviscoplasticity theory based on overstress (TVBO) [14] and a
multiaxial damage accumulation law (MDA). Time-dependent thermomechanical behavior and
temperature-dependent material properties are modeled by TVBO, and the multiaxial creep-
fatigue damage is determined by integrating two temperature-dependent damage rate equations
using the inelastic strain rates and stress computed from TVBO. The calculated cycles to failure

are compared with the observed values and the results are discussed.

Theory
T iscoplasticity TI Based on Ov TVBQ

The theory developed by Lee and Krempl [14] is for infinitesimal strain and orthotropy. It is
of unified type and does not use a yield criterion and loading/unloading conditions. The elastic
strain is formulated to be independent of thermomechanical path and the in\elastic strain rate is a
function of overstress, the difference between stress &, and the equilibrium stress £; it is a state
variable of the theory.

The long term asymptotic values of stress, equilibrium stress, and kinematic stress rates,
which can be obtained for a constant mechanical strain rate and ultimately constant temperature,
are assumed to be independent of thermal history as are the ultimate levels of the rate-dependent
overstress and of the rate-independent contribution to the stress, see Yao and Krempl [15].
Therefore the material functions and constants can in principle be obtained from isothermal tests
within the temperature range of interest.

All material constants can be functions of temperature. This dependence is not explicitly
displayed. The temperature dependence can be the usual Arrhenius relation or can deviate from
that model.

For the representation of the equations, the usual vector notation for the stress tensor
components G and the small strain tensor components € are used. Lower and upper case letters

with a A denote 6 x 1 and 6 x 6 matrices, respectively.




Flow Laws -- In thé context of an infinitesimal theory, the total straih rate, d€/dt, is
considered to be the sum of elastic, €/ dt, inelastic, d&* /dt, and thermal strain rates, dé® /dt,
g = £ 460 48", ¢))
A superposed dot represents the total time derivative, d /dt.
For each strain rate, a constitutive equation is postulated. The elastic strain is assumed to be

independent of thermal history, therefore,

éel - C-l - C-l¢+c-lo.
al )

where ¢! is the compliance matrix. The additional term é“& contributes to the total strain rate
for temperature dependent elastic material properties. It insures that the elastic behavior is path-
independent, sec Lee and Krempl [16].

The inelastic strain rate is only a function of the overstress x. It denotes the difference
between the stress G and the equilibrium stress £, a vector state variable of the theory.
Accordingly,

£" =K% . 3)
The viscosity matrix K-* controls the rate dependence through the positive, decreasing viscosity
function k[I7].

The thermal strain rate is given by

é* =aT @
with @ the coefficient of thermal expansion vector. T is the temperature difference from some

datum temperature.

Growth Laws for the State Variables -- In addition growth laws for the two state variables of

TVBO, the equilibrium stress £ and the kinematic stress f , are given as

X

2 _ % aq[I‘]. - - - Ty
=TI+ TS 26+ (@l a1~ 1 -al Dl (s)

aT




f? = _p_ i '
K[ ()
respectively, with

~ ‘A 1 -~ “ -~ -~ - ) -
I’ =xHx, 0°=—2'Hz, x=6-¢,and 2=g-f
Al £ Bt @

In the above the dimensionless modified shape functions q controls the shape of stress-strain
diagram. The dimensionless constant p represents the ratio of the tangent moduli at the
maximum strain of interest to the corresponding viscosity factors, p 3 0. The invariant 0 is
related to the rate independent contribution to the stress. The vector z represents the difference
‘between the equilibrium stress £ and the kinematic stress f. Asymptotic analyses for the
uniaxial isothermal case in [15,17] show that t: determines ¢ ultimately. The purpose of (6) is
to set this slope which can be positive, zero or negative. The representations of the material
matrices for isotropy are given in Appendix L.

The theory given above represents cyclic neutral behavior. Rate sensitivity, relaxation and
creep are modeled. Since no recovery of state is included the creep behavior is controlled by the
sign of p. If p > 0 the equations can only represent primary creep. Primary and secondary creep
may be modeled for p = 0; primary, secondary and tertiary creep can be represented in principle
if p < 0. Note also that p sets the slope of the stress-inelastic strain curve of the maximum
inelastic strain of interest through (6), see the discussion of VBO in [11,15,17].

When recovery of state is included in the model [18-20] the creep behavior is no longer
completely controlled by the sign of p and secondary creep can be reproduced at stress levels
which are in the linear region of the stress-strain diagram. Also the isothermal formulation of
VBO has been extended to cyclic hardening [21-22]. It is possible to include this property as

well as recovery of state in the TVBO theory. This will be done in a future paper.

The L. Multiaxial D : lation L
The multiaxial damage accumulation law (MDA) is proposed based on the modification of

the incremental life prediction law for uniaxial creep-fatigue interaction [13). The model




includes the effect of hydfostatic stress on creep and fatigue damage.

The importance of hydrostatic stress on the low-cycle fatigue life has been acknowledged
[23-24]. The materials loose ductility and become brittle under hydrostatic tension while the
brittle materials become more ductile under hydrostatic pressure. To model the hydrostatic
effects the triaxiality factor TF (= O, /O4) is used in the model, where G, is the first stress
invariantand O is the von Mises effective stress. (Indicial tensor notation is used in this part.)

The present law is intended for the prediction of crack initiation, which is assumed to occur
| along the plane of maximum inelastic shear strain rate [25]. The creep damage is assumed to be
cavity-type which initiates on grain boundaries normal to the maximum principal tensile stress
direction [9,26]. The proposed incremental multiaxial damage accumulation law consists of a
fatigue and a creep damage rate equation D; and Dc, respectively. Damage is only a counter and
its evolution does not influence the constitutive equations. Fatigue and creep damage are set to
be zero initially (for a virgin or fully annealed material), and crack initiation occurs if the sum of

fatigue and creep damage reaches one. Following [13] the incremental law is given as
ey, My

. LEe Mol

Df=—L
Te| €| | Of 8)

2 las %] oo R

D, = Zeffal (Oa|

Tc € O, (9)

D,+D =1 (10)

Failure is said to occur when

L% is the fatigue loading function which models the effects of multiaxial loading and
temperature T. It is assumed to be controlled by the ratio of €, and £}, where & is the
normalized maximum inelastic shear strain rate, and where £, is the normalized inelastic strain
rate perpendicular to € [9,25]). The word "normalized" denotes that the multiaxial inelastic

strain rates reduce to the uniaxial value for uniaxial loading. For the case considered here, (axial




and torsional loadings), €5, =€, and &}, =[(€,)*+4/9(7,)*F", where €, and Y,, are the inelastic
strain rates for axial and torsion, respectively. L? is the creep loading function which represents

the effects of the multiaxial loading and temperature. L! is a function of the ratio of maximum

principal stress G, and the von Mises effective stress O [9]. We define

Lt = Lo, T]= L_,[T]. a20
LTl a<0 (11)
Lt =L}[B,T]= {L_‘m’ P20
LTl B<0 (12)
N
o= Eén B= L,
where En Oeff

In addition two modified effective stresses Gy and O for fatigue and creep, respectively, and

two multiaxiality factors MFg and MF;, are defined as

Oy = O4{l+a(1-TF)) (13)
Oz = Oq{l+b(1~TF)) (14)
MF, = (1+a(1 - TF))™ (15)
ME, = (1+b(1 -TF)}*®. (16)

L% >0 is postulated and the fatigue damage always accumulates but a negative creep damage
rate is allowed (creep damage is, however, always positive) through Lt. For instance, L), = 1
and L = -1 are assumed for the uniaxial case in tension and compression, respectively [13].
Constants T;, T, €, and €, in equations (9-16) are introduced for dimensional considerations.

They are set equal to one in an appropriate units. The other constants n;, my, G, n,, m,, G, a, and

b must be determined from appropriate tests under multiaxial creep-fatigue interaction.
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Numerical Experiments.
Evaluation of constants

To model the multiaxial thermal time-dependent fatigue behavior the material properties of
TVBO and MDA must be known as a function of temperature. For a complete determination of
the viscoplastic properties strain rate change and relaxation tests are needed. Since such results
are generally not available the present analysis uses whatever data are available augmented by
"educated guesses” of the behavior to arrive at the material constants. The temperature-
dependent material properties of TVBO and MDA are found from isothermal conditions and are
interpolated for variable temperature. For instance a decrease in modulus, and flow stress with
increasing temperature has been assumed in Fig. 1 for an Al alloy of Ref. [28].

TVBO together with equations (8-16) constitute the incremental multiaxial life prediction
law and must now be applied. The boundary conditions and the material properties must be
specified for calculation. For integration of the coupled set of differential equations the IMSL
routine DGEAR is used on a SUN 3 work station.

The steady-state hysteresis loops under tension, torsion, and proportional biaxial loading
with and without hold time for 304 SS at 538°C [1] are used to approximately determine the
material constants of TVBO at 538°C. The constants are listed in Table 1.

Using TVBO and MDA life-time at 538°C can be calculated. Experimental failure points of
uniaxial, torsional, and biaxial low-cycle fatigue tests with and without hold-time for 304 SS at
5380C [2,3] are used to identify the material constants of MDA. By virtue of the uniaxial low-

cycle fatigue life at 538°C and the assumptions [13]

L,_{L';=1,$h20
f = - .
L;=0,¢,<0, an

the material constants of fatigue damage n,, 6;, and my are obtained. The constant "2" in eq. (15)
and fatigue loading function L[, T] can be found using the data for torsional and proportional

biaxial low-cycle fatigue tests at 538°C, respectively. Following the same procedures for the
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determination of ny, G, and m, and using the assumptions [13]

Lt = L:=10620
L.=-1,6<0 (18)

for uniaxial case, the material constants n_, G, m,, and b, and creep loading function LX[B,T] can

be evaluated from uniaxial and biaxial hold-time low-cycle fatigue tests at 538°C.

For simplicity the multiaxiality factors MF_ and MF; are assumed to be 0.5 for torsional
fatigue tests with and without hold-time, respectively, to determine the constants a and b. The
- material properties for MDA are shown in Table 2.

The dependence of the fatigue loading function L} on lod is shown in Fig. 1, where log is
determined at the maximum strain of the cycle. In Fig. 1 L} increases from 0.17 to 1 as ot
increases from O (pure torsion) to 1 (uniaxial), while the opposite is true for L; which decreases
from 0.17 to O whiled |of increases from 0 to 1. For biaxial loading 0 < lj<1. L% =L for pure
torsional loading, since the direction of shear should have no influence on crack initiation. The
creep loading function L, versus f is shown in Fig. 2. B is determined at the maximum strain of
interest. L, increases from 0.3 to 1 as P increases from 0.577 (pure torsion) to 1 (uniaxial). For
biaxial cases P is between 0.577 and 1. L7 is assumed to be equal to -1 for the uniaxial
compression to account for the healing effect observed in the experiments [12,26). For torsional

and biaxial cases B < 0 and L_ is postulated to be zero since no healing was reported in [9].

Def ion behavi

Deformation behavior computed using TVBO are shown in Figs. 3 and 4. In Fig. 3 two
hysteresis loops for completely reversed strain-controlled loading at a strain amplitude of $0.5% .
at steady state at 538°C are shown. Tensile and symmetric holds of 600s are introduced. The
inelastic strain range of the symmetric hold test is slightly larger than that of tensile hold test.
Steady-state hysteresis loops for slow-fast and fast-slow tests are shown in Fig. 4. The two loops

are almost symmetric with respect to the origin. A near vertical drop is observed in the
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transition of the changing from the fast strain rate 10-3 1/s to the slow strain rate 1076 1/s.

Lif ficti

The calculated and observed biaxial low-cycle fatigue lives together with two lines
indicating a deviation of a factor of 2 in life are shown in Figs. 5 and 6 for the cases without and
with hold-time, respectively. Because of the scarcity of the experimental data, only the data
points for strain ratio R = 2 (R = Ay/At) are predictions in Fig. 5. The predicted lives in Fig. 5
are within the bounds and are acceptable. The results of the uniaxial, torsional, and biaxial hold-
time tests are shown in Fig. 6. Although three points are outside of the bounds, the trend is

correct and is thus acceptable.

6.2.3 Discussion

IMLP, which consists of the thermoviscoplasticity theory based on overstress (TVBO) and
the multiaxial damage accumulation law (MDA), is applied to correlate and predict the low-
cycle fatigue lives of 304 SS at 538°C under biaxial creep-fatigue interaction. The material
constants of TVBO and MI * for 304 SS at 538°C are identified using the experimental data of
1] and [2;3], respectively. a1 TVBO theory used here, effects of recovery, aging, and cyclic
hardening are neglected. There are some indications that recovery and aging are important at
538°C in 304 SS. A quantitative assessment of these effects, however, cannot be obtained from
the available low-cycle fatigue data. They are consequently not modeled.

If IMLP is applied to thermal fatigue, both egs. (1) and (5) have additional terms. These
additional terms influence not only the elastic but also the inelastic behavior [16]) and
consequently affect the predicted low-cycle fatigue lives. The application of IMLP to predict the
low-cycle fatigue life under thermal multiaxial creep-fatigue interaction will be presented in a
future paper. The temperature-dependent material properties of TVBO and MDA can be
determined from isothermal tests at different temperatures.

Although the calculated lives in Fig. 6 do show three points which are beyond the limits of a
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factor of 2 on life, the trends of the computed lives are in the proper direction. The three
points are a uniaxial hold-time test, a biaxial R=1 hold-time test and a symmetric hold-time test
in torsion. It can be seen from Table 2 in [9] that the fatigue life of the uniaxial test with 0.5%
strain 4ange and 60 minutes tensile hold-time (the first out-of-bound point) is unusually short.
The biaxial test has the smallest effective strain range of all the tests and the deformation
behavior shows very little inelasticity. In this region small deviations of the predicted stress-
strain behavior from the real one can play an important role in the life calculation. It should be
further considered that a complete daia set was not available for determination of the constants.
Some properties had to be assumed. Deviations have to be expected. The final unusual point is
for torsional test with 0.55% effective strain range and 6 minutes symmetric hold time. The
calculated value is much lower than the observed value. We have no explanation for this
behavior.

The present paper intends to show the capabilities of modeling the time-dependent multiaxial
thermal fatigue behavior using the thermoviscoplasticity theory based on overstress (TVBO) and
multiaxial damage accumulation law (MDA). The trends are encouraging. For the complete
evaluation of the predictive capability a consistent set of data is necessary. Some will be used to
determine the needed material constants, others should be used to check on the predictive
capability of the theory. Variable amplitude and thermal fatigue tests should be included in the
latter set. Finally, MDA is not restricted to periodic loadings, it can in principle be applied to

arbitrary deformation histories.
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Appendix I
Matrices for Isotropy
The nonzero components of the symmetric elastic modulus matrix ¢! and the symmetric
viscosity matrix K-! are represented by
(CH=(CNy=(Chy=1/E
(C1)ge = (CN)ss=(CNge = 1/G
(CYH;=-V/E,ij=1,2,3,and i# j (A-1)
and
KDy = K1)y, = (K15 = 1/EK(IT]
(Kgy = (K5 = (K1)g = 3/EK[I

(K);=-1/2Ek[I,1,j=1,2,3,and i # j (A-2)
where inelastic incompressibility is assumed and G = —E_
pressioiity andG =31+

The positive decreasing viscosity function k[I'], dimension of time, controls the rate
dependence. { is a dimensionless matrix, the nonzero components are given by
Hj =Hy=Hyu=1
Hyy =Hgg=Hge=3
‘ H;=-05,i,j=1,2,3,andi # j. (A3)
The coefficient of thermal expansion vector is &

& =[aaa000] (Ad)

All components are material properties which must be identified for a given material.




Table 1--Material Properties of TVBO for AISI 304 SS

E (MPa) = 155000 v=029

q(I"] = y{T')/E p=E/E

Viscosity Function: k[I'] = k,(1 + k£)'k3
2

k, = 314200 (s), k, =60 (MPa) k; =28
Shape Function: y[I'] = ¢, + (c,-c;)exp(-c;I)
¢, = 79500 (MPa), ¢, = 151900 (MPa), c,; = 0.18 (MPa'!)
E, = 2500 (MPa), A = 240 (MPa), Inelastic Poisson's Ratio: 11 = 0.5

Table 2--Material Properties for Damage Accumulation Law

Fatigue Damage Creep Damage
Ti=1(s) T.=1()

& =1(1/s) & =1(1/s)
n,=0.83 n.=0.274

o, = 1000 (MPa) o, = 1021.6 (MPa)
m, = 1.835 m, = 5.667

a=-0.3146 b=-0.1184

18
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Figure Captions

Fig. 1 Fatigue loading functions vs. lfll for 304 SS at 538°C.

Fig. 2 Creep loading function vs. B for 304 SS at 538°C.

Fig. 3  Strain-control steady-state hysteresis loops of 304 SS at 538°C under tensile hold

‘and symmetric hold loadings.

Fig. 4 Swain-control steadv-state hysteresis loops of 304 SS at 538°C under slow/fast and
fast/slow loadings. Near-vertical drops are at the transitions from fast to slow
loadings.

"Fig.5 Observed fatigue lives versus calculated fatigue lives using the IMLP for different
biaxial loadings. The data for R=2 are predictions.

Fig. 6 Observed fatigue lives versus calculated fatigue lives using the IMLP for different

biaxial hold time loadings.
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ABSTRACT

The vanishing fiber diameter model (VI'D) and the thermoviscoplasticity theory
based on overstress (TVBO) are combined to analyze the thermomechanical behavior
of angle-ply laminates using classical laminate theory. TVBO is a "unified" theory
which dves not separately postulate constitutive equations for creep and
rale independent plasticity. All inelastic defonnation is considered rate-dependent and
the concept of a yield surface is not used. Creep, relaxation, rate sensitivity and cyclic
behavior ure are included in this analysis tool where the composite is characterized by
the fiber (matrix) volume fraction. As an example, numerical experiments illustrate the
influcuce of residual stresses and ply angle on the free thermal expansion behavior of
Gr/AL angle-ply laminates.

INTRODUCIION

Mctal matrix composites are being considered for use over a wide range of
tempesiture. This includes high temperature service where rate(time)-dependent effects
such as creep, relaxation and rate sensilivity play an important role. These effects can
also be found at low homologous temperature, but are not considered important.
Elevited temperature service always implies variable temperature as the components
hiave 1o be brought to the operating temperature at the start of the equipment and they
will be cooling down when it ceases operation. Under variable temperature, the
possible dJifference in the coefficients of thennal expansion (CTE) of the fiber and of
the mietal-matrix can cause intemnal stresses which affect the mechanical behavior and
the lifetime of the metal matrix composites. Of specific interest here is the influence of
1csichual stresses due to cool-down from manufacturing temperature on the subsequent
theimal cycling behavior. Following previous developments for a single ply, see (1]
aml [2], we adopt the simple laminate model of [3] to formulate a theory of
theimomechanical behavior of laminates. Each ply is characterized by the fiber
volune fraction, the fiber and matrix mechanical properties. To compute the laminate
behavior the lay-up must also be known. llere we restrict ourselves to the thermal

cycling behavior of symmetric angle-ply compusite laminates (1§°),.

The matrix behavior is modeled by the thermoviscoplasticity theory based on
oveisiicss ('VBO) formulated for orthotropy in [4). A simple composite model, the
vanishir.g fiber diameter model (VFD) of |§] is combined with TVBO to obtain the
thice ‘limensional  equations  describing the thermomechanical behavior of the
composite continuum represented by a ply with the fiber and matrix volume fractions
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as parameters. This theory consists of 19 coupled, nonlincar differential equations
which have to be solved under a given set of boundary conditions for (he prescribed
loading and temperature history. This theory is completely derived in [1] and
applications are reported in [2]. The purpose of this paper is to investigate the effects
of residual stresses and the ply augle () on ... thermal cycling behavior of angle-ply
metal matrix laminates.

THE COMPOSITE MODEL AND NUMERICAL SIMULATION
Preliminaries

For the present investigation the fiber is assumed to be transversely isotropic, elastic
with temperature-independent properties. The matrix is postulated to be isowropic and
thermoviscoplastic and to be represented by TVBO [4). When the VFD model (5] is
combined with the TVBO the composite is characterized by a set of 19 coupled, first
order, nonlinear differential equations which can be found in [1]. These equations are
specialized for the case of plane stress to represent & lamina reducing the number of
coupled nonlinear differential equations to 10. To obtain the laminate behavior, the
usual coordinate transformation rules and the approximations known from simple
laminate theory [3) are adopted. The overall siress rates are now obtsined as a function
of ply angle, ply thickness, laminate thickness and number of plies thus adding another
set of three coupled, nonlinear differential equations. This theory enables the
simulation of in-plane loading of composite angle-ply laminates under isothermal
conditions or for uniformly changing temperature. For a continuum representation of
the ply behavior, laminate theories have been published in [6,7]. Details of the present
developmeat can be found in {8).

For a single ply, the reference and material coordinate systems ar: denoted by 1, 2,

6 and x, y, s, respectively. Superscripts { and ™ denote fiber and matrix, respectively.

For numerical calcuistions material properties must be known as a function of
temperature. Since all material constants of the theory can be functions of temperature
a wide variety of thermomechanical behavior can be modeled. However, the fiber and
matrix propertics must be known from suitable experiments which must include the
characte.ization of the rate(time)- dependent behavior. Such data is scarce, specifically
for metal matrix composites intended for elevated temperature service. However, such
data are being developed and the theory can be applied to these true high temperature
systems in the future. For the purposes of this paper a Gr/Al metal matrix system is
simulated. for which (gmpem‘“ were found from test data and reasonable assumptions,
sce [2). Since the Graphite fiber has a negative coefficient of thermal expansion
interesting behaviors are found during experiments involving thermal cycling of a
single ply, see [9].

In this paper only free thermal cycling is simulated, the ply or laminate is only
subjected to a uniform temperature change which causes stresses to be developed
between fiber and matrix and between the laminae. This interaction not only
influences the mechanical behavior (2] but also affects the overall coefficient of
thermal expansion which needs to be known. The set of goverting differential
equations is ialized for zero overall stresses. Since no closed form solution seems
o be possible, the differential equations are integrated numerically, a numerical
experiment is being performed. The numerical integration was done on a Sun 3/60
work station using the IMSL routine DGEAR. The output data file was then plotted
using Tcmgllefnph. The plotted resulis can be compared with experimental results
where available. To integrate the set of coupled differential equations for a laminate,
about 30s running time on the Sun 3/60 is necdec.
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E;siglual Suresses upon Cool-Down (rom Manufacturing Temperamre for a Gr/Al
ninate

Overall siresses are assumed to be zero and the temperature is decreased at a

coustant rate of 0.033 °C/s. It is assumed that the composite is stress free at 660 °C
and that perfect bonding between fiber and matrix and between olies stant at that
temperature. Since the coefficient of thermal expansion is larger for tac matrix than for
the fibers, tensile matrix stresses and compressive fiber stresses in the 1-direction

develop in a +12° ply as shown in Fig. 1 for Gr/Al with cf = 0.5. At point 1 room
tewperature is reached. Due to the rate dependence of the matrix at room temperature,
the suesses relax to point 2 with time. Fig. 1 also plots the evolution of the matrix

cyuilibrium stress g™, a state variable of TVBO (it is similar to the backstress of other
theuries). The difference o™ - g™ is the overstress of the matrix and it "drives”

inelastic deformation. The inset shows the oversiress 6;™ - g,™, rapidly decreasing with
lime. After 30 days the overstress is nearly zero and the residual stress state is nearly
constant at point 2. Small changes may still occur, but for practical purposes the
residual stress state remains stationary from thereon.

All residual quantities, matrix stress and state variables enter as initial conditions for
simulation of subsequent tests. They can affect the modeled behavior and therefore
timie appears to influence it until equilibrium is reached. Then the model predicts that
the subsequent response is independent of the rest time at room temperature. In
subsequent numerical experiments, the residual stress states at point 1 and at point 2 are
designated as Case 1 and Case 2, respectively. The differences between the subsequent
responses of Cases 1 and 2 represent the influence of the relaxation of the residual
stresses.

‘e Influence of Residual Stresses on the Thermal Cycling Behavior of Gr/Al
Composite.

‘The thermal cycling behavior of Gr/Al angle-ply laminates is of special interest due
10 the negative axial coefficient of thermal expansion (CTE) of Graphite. It gives rise
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to some unusual expansion behavior, see [2,9]. The composite laminate is free to
expand (overall stresses are zero) and is subjected to a temperature cycle starting from

room temperature to 1 120 °C at a rate of 0.033 °C/s.
The resulting 1-direction strain-temperature hysteresis loops are depicted in Fig. 2

for a unidirectional and a (£12°), laminate. The hysteresis loops are similar, but the
angle-ply laminate expands more than the unidirectional one. It is seen that both
laminates expand on the segment 0-1 but then contract with increasing temperature,

segment 1-2. Upon decrease of temperature from 120 °C the laminates shrink as
expected but expand at point 3 although the temperature continues to decrease. This
attern continues in the subsequent reversals. At point 4 a 600 s temperature hold is
introduced and the strain decreases by a small amount to point 5, the laminates "creep”

under zero extemnal load. For (£129), laminate the strain increment is small in segment
0-1 but the strain decreases more in segment 1-2 than for the unidirectional laminate

{10°),. During 600s temperature hold more creep strain accumulates for (£12°), than

for (£0°), No residual stresses resulting from cool-down from manufacturing
temperature are considered in Fig. 2.
To show the influence of residual stresses, Cases 1 and 2 are simulated in Figs. 3

and 4 for (£12°), laminates, respectively. Cooling down takes place on 0-1. While the
composite rests free of overall stresses at room temperature, the overall strain increases
on path 1-2, see Fig. 4 (this portion is absent in Fig. 3 which depicts Case 1). At 2
temperature cycling begins, the composite expands first, 2-3, but starts to shrink, 3-4
and then the pattern of Fig. 2 continues. However, this time the first part of the first
cycle 2-5 is not inside the subsequent loop as it was the case for Fig. 2, see segment
0-3. Rather the first segment is shifted and the shift depends on the case considered.
The residual stresses of the fiber, matrix, and plies alter the initial hysteresis loop.

This unusual behavior is due to the iniernal siresses between fiber and matrix. This
is illustrated for Case 2 in Fig. 5§ where the development the matrix and fiber stresses of

a 12° ply during cycling (the cool-down portion 0-2 is omitted) is depicted. For
identification the numbering scheme of Fig. 3 and in Fig. 4 is used. Cycling staris a1
point 2 with the residual stresses present from the previous history. As the temperature
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increases the magnitude of the matrix and the fiber stresses decrease almost linearly
until yielding sets in at 3. It is also seen that the matrix overstress is nearly zero on the
scale of the graph on path 2-3, indicative of the absence of time-dependent deformation
in this region. The matrix starts yielding at points 3 and 5 where the breaks in Figs. 3
and 4 occur. During inelastic deformation the stiffness of the matrix is considerably
reduced and its restraint on the graphite fibers which want to shrink with increasing
temperature is reduced. The laminate shrinks on 3-4, Nearly elastic stiffness prevails
on 4-5 until the matrix yields at point S where the temperature-overall strain loops
show a distinctive break. It is clear that the unusual behavior is due to the mamx
yielding and the negative axial CTE of Graphite.

"The "micro creep strain" developed during a 600 s temperature hold at point 6 is not
noticeable on Figs. 3 and 4 but the swress drop is observable in Fig. 5. For practical
purposes the larminate behaves in a time-independent manner.

Due to the distinctive appearance ot the overall strain-temperature hysteresis loops it
is pussible to define overall elastic and inelastic CTEs. For simplicity the elastic and
inclastic CTEs are determined as tangents to the hysteresis loops during temperature

incicase in 20°-50°C and in the 100°-120°C ranges, respectively, at the first and the
fifth reversals. The results are given in Fig. 6. While no residual stress effects are
found in the elastic range, the inelastic CTEs in the first and fifth reversals are smaller
than the CTEs without residual stresses. The inelastic CTEs are invariably negative

and 1cach a maximum absolute value at ¢ = 30° for all cases.
DISCUSSION

‘T'he thermoviscoplasticity theory based on overstress is used in conjunction with the
vanishing fiber diameter model in a simple analysis of the thermal cycling behavior of
angle-ply composite laminates with and without residual stresses. Realistic but
assumed material properties permit the execution of numerical experiments. The
puesent theory exhibits rate-dependent behavior. The first example is the redistribution
of the 1esidual stresses while the composite clement is sitting stress free at room
tempetature after cool-down from manufacturing temperature. The theory predicts that
this iedistribution will come to an end after some time which depends on material
constauts, especially the viscosity function used. In the present application the

150 T

| T GiAl | Te0033Cs i

=03
1 CTE .

Case 2 =03
Gr/Al +2

ww
=
=

Stess (MPa)

CTE a,(10* m/m/*C)

-2

3
-$0) N
-l 1 20.033Ch Sticremens)

SF-|CTB (Coee ) (5*rev.)]
B b [ DU DEUON U | '] FOUTU TUUV TU FUUIE U TUUON NN PO

-150 -100 -S5O 0 50 100 150 0 3 10 1% 20 25 X ) & &
Temperature (°C) ¢(Degree)

Fig. 5. The “l ] * & ped during remp cycling Fig. 6. Veriston of azial CTE of y Laminases ("), a3
la'uuz. Curves siart a4 room iswperasure, poim 2 is Fig. 4. nmdwuwmmm—lm




69

redistribution is almost finished after 30 days. While the stresses redistribute the time
spent at room temperature appears to have an influence on the subsequent behavior.
Another example is the creep strain accumulation during a 600s temperature hold in

Fig.2. The creep strain, although small is larger for (112°), than for (10°),. The matrix
contribution to the deformation increases as the ply angle increases and as a
consequence rate dependence is bound to increase with increasing ply angle.

The development of the internal stresses shown in Fig. S is the reason for the
anomalous free thermal expansion of the Gr/Al composite laminates. The results of
Figs. 3-5 suggest that residual stresses are responsible for the special shape of the
hysteresis loop and the special form of the first cycle. The special form of the first
cycle was found with experiments on a singie ply in [9]. Our theory shows that this
property carries over to angle-ply laminates.

Disregarding the first cycle, residual siresses are shown to have an effect on the
overall inelastic CTE of a laminate, see Fig. 6. They decrease the absolute value of the
inelastic CTEs. In this sense they are beneficial. A nonlinear relationship between
CTE and ply angles exists in every case indicative of very complex interactions
between CTEs of the constituents and the inelastic thermomechanical behavior of the
matrix. For the case without residual stresses the CTEs vs. ¢ curves cormrespond to the
trend of the results obtained with a time-independent plasticity, finite element model of
the laminate [10].

The present analysis also permits to determine the fiber and matrix stresses in every
ply and this information is useful for lifetime caiculations which are not performed here
but are considered elsewhere, sce (8).
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ABSTRACT

The vanishing fiber diameter model (VFD) and the thermoviscoplasticity theory
based on overstress STVBO) are used to analyse the thermo-mechanical behavior of
angle~ply composite laminates using classical laminate theory. TVBO is a "unified"
theory which does not separately postulate constitutive equations for creep and
rate~independent plasticity. All inelastic deformation is considered rate—dependent and
the concept of a yield surface is not used.

Assuming that fiber and matrix are stress free at the manufacturing temperature and
remain perfectly bonded during cool down to room temperature the model permits the
calculation of residual stresses between fiber and matrix which can influence the subsequent
thermomechanical deformation behavior. A time—dependent, slowly diminishing
redistribution of the residual stresses is predicted while the composite is sitting stress free
at room temperature. As a consequence subsequent mechanical behavior depends on time
spent at room temperature until the stress redistribution is complete which for the chosen
material properties happens to occur after 30 days. Tension/compression asymmetry for a

unidirectional and a (+#12°), B/Al laminate are two examples for which detailed numerical
analyses are performed. The results are encouraging and reflect the trends of the few
available experimental results.

INTRODUCTION

Future airplanes and space structures need to be made of materials with high specific
strength and stiffness as well as high fatigue and fracture resistance. Metal matrix
composites are prime candidates for these applications. When thermal and mechanical
cycling is involved ag is frequently the case, stresses between fiber and matrix may develop
when a mismatch of the coefficients of thermal expansion of matrix and fiber is present.
These internal stresses ml{. affect the mechanical behavior of the composite and may lead
to premature failure. It is therefore necessary to develop analysis tools to predict and
alleviate these internal stresses in the design stage. Since rate (time)—dependent effects are
{requently present a thermoviscoplastic analysis is in order.

In an early experimental investigation Cheskis and Heckel [1970] used X-ray
techniques to measure fiber and matrix stresses in a 2024 Al/W composite. They showed
tha:l t:lle yield behavior of the composites is significantly influenced by manufacturing
residual stresses.

Dvorak and Rao [1976) used a plasticity theory to compute the residual stresses in
heat—treated metal matrix composites. They concluded that the residual stresses found




after heat—treatment are significant in magnitude and a high bydrostatic stress component
in the matrix a¢ the fiber~matrix interface may cause fracture or fatigue damage.

The purpose of this paper is to present a simple tool to analyze the thermomechanical
behavior of metal matrix composite laminates for time dependent deformation including
rate sensitivity, relaxation and creep. To this end the thermoviscoplasticity theory
%TVBO) of Lee and Kremgl {1991} is combined with the vanishing fiber diameter model

VFD) of Dvorak and Bahei-El-Din {1982] to determine the plane stress behavior of
angle-ply laminates using standard classical laminate theory. Of special interest are the
influences of fabrication residual stresses on the mechanical behavior. The residual stresses
which develop during cool-down from manufacturing temperature and which can
tedistribute with time while the composite is stress free at room temperature are found to
have a significant influence on the room temperature tension/compression behavior. The
‘I'VBO theory used here represents viscoplastic behavior which is sometimes called "cold
creep”, i.e. the creep behavior in metals seen at low homologous temperature. The growth
laws for the state variables must be auémented by a suitable recovery of state term to
represent secondary creep in the quasi elastic region of the stress—strain diagram. Such
modifications are easily implemented but are not pursued hete due to the fack of high
\emperature composite creep data.

‘THE COMPOSITE MODEL. THERMOVISCOPLASTICITY THEORY BASED ON
OVERSTRESS (TVBO) AND THE VANISOING FIBER DIAMETER MODEL (VFD)

"

v
The three dimensional thermoviscoplasticity theory based on overstress has been
developed by Lee and Krempl [1901]. In the present analysis a plane stress state in a
fibrous ply is assumed. The usual vector notation for the stress tensor components ¢ and
the small strain tensor components ¢ are used for the representation of the equations.
Bold{ace capital letters denote 3x3 matrices.

Stresses and strains without a superscript designate quantilies imposed on the

composite as 8 whole. Superscripts f and ® denote fiber and matrix, respectively. The fiber

voluine fraction is cf and c® denotes the matrix volume fraction with cf + ¢® = 1. The
fiber is transversely isotropic thermoelastic, the matrix is isotropic, inelastically
incompressible and thermoviscoplastic as represented b{ TVBO. Fiber orientation in the
x—direction is postulated, see Fig. 1. The x y 8 is the preferred or on—axis coordinate
system and 1 2 6 is the off-axis system. For convenience in writing we denote the vectors
which are referred to be the off-axis system with & prime.

For the VFD model, Dvorak and Bahei-El-Din [1982], the following constraint
equations hold

== forimy,s
1'7; -c'&{-}-c‘b}
aascdid+c et fori=y,s (1)
f

& = &g = €3

When they are combined with the TVBO equations by Lee and Krempl {1991] the
composite is characterised by the following set of equations: (details can be found in Yeh
and Krempl {1990])

e = Tla + (K")"'X" + (R') o' + (R")0" + OT ()

together with a separate growth law for the ¢} component of the matrix
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In addition growth laws for the two state variables of TVBO, the matrix equilibrium stress

g" and the kinematic stress f*, are given as

g = r)on + 7 Bt 4 {arire - o= ae(re) -

o)} 2

and

L JN i )

4

(5)

e[
respectively, with
(r*)* = (x*)* H(x")
1.1 ¢
() ZAT)’(..) H(s%)

e N okt o
=gt
1 05 0

H=[-05 1 0
o 0 3 (©)

In the above inelastic incompressibility for the matrix is assumed. C!is the overall

compliance matrix and (K®)™! is the viscosity matrix. The matrices (Rf)* and (R:?"
contain time derivatives of the elastic constants of the fiber and the matrix, respectively.
All components of these four matrices are listed in Appendix 1. The viscosity function

k*[l*] and the dimensionless shape function q®[I'®] are decreasing (q*[0] < 1 is requized,
see Lee and Krempl [1991]) and control the rate dependence and the shape of the
stress—etrain diagram, respectively. (Square brackets foliowing & symbol denote "function

of".) The quantity p™ represents the ratio of the tangent modulus E? at the maximum
inelastic strain of interest to the viscosity factor K®. It sets the slope of stress—inelastic
strain diagram at the maximum strain of interest. E.;, L, & are defined in Appendix 1.
An explanation of TVBO is given by Lee and Krempl [1091].

Eq. (3) is used to calculate the instantaneous axial matrix stress which can not be

obtained from the overall boundary conditions directly. of is affected by mechanical and
thermal loadings and their loading paths. For instance for pure thermal loading (overall

11




Stresses are gero), o} together with g2, {2 will develop due to the difference in the

coelficients of thermal exyﬁmcion of fiber and matrix, see (3); these matrix stresses in the

. fiber direction cause coupling between the mechanical and thermal loading in the inelastic

;?nge. l'fll: 9(()!]euih of derivation and explanation of equations (1-2) are given by Yeh and
remp . :

Trmgmuion of strain, stress, and the state variable vector are defined by

¢ = N
o = Mo™ )
¢ = Mg

The superscript r denotes fiber, matrix, or composite. The transformation matrices N and
M are, see Tsai and Hahn [1980],

w? n! wn
Na| n? w? —wn (8)
=2wn 2wn wl-p?

w? n? 2w
M=| n? w? —zvu, ®)
~wn wo wi-a

where w = cosé and n = sin¢, ¢ is defined in Figure 1. From equations (2) and (7) we then
have, see Krempl and Lee [1088], .

€ = NTC'M & + N(K")"Mxg’ + N(R)'Mo"
+ N(R")'M¢™ + N-aT (10)

tn=Flate Belormation ots Laminaia Taminates, the laminate code of Tsai and Hahn [1980] is adopted.

The average stress of the laminate is defined as

‘p-%‘gl oy by (11)

where h is the laminate thickness, by the ply thickness of the i—th ply, and p and n denote
laminate and the number of gliel, respectively. The strain is constant through the
laminate thickness and is given by

a=¢ (im1,2....10) (12)

The average stress rate &’ is obtained from (10) and (11)
o' = B o i v -‘g‘[(u-'c(x-)-'ux--) + (MO(R!)"M"

+ MIO(R®) "Mo™) + u-'car]. b (13)
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elasticity equations found in Tsai and Hahn [1980] except that the elasticity matrix is
replaced by the matrix obtained from the VFD model. This matrix has the same
symmetries as the orthotropic matrix of elastic moduli. It is seen from the Appendix that

the matrices (K®)!, (Rf)" and (R®)"! are not symmetric. For specially stacked laminates,
such as symmetric, antisymmetric, angle ply, the matrix products appearing in (13) have
certain symmetries which for the first term are known from Tsai and Hahn {1880].

Inspection reveals that the first term on the rii’ht hand side of (13) is the rate form of the

It is clear from (13) that the individual ply stresses cannot be prescribed, only the
average stresses or the strains and the uniform temperature can be enforced. The following
cases): can be distinguished (the isothermal case is recovered when the temperature rate is
zero).

Average Stress and Temperature Control. For average stress—temperature control,
the average stress rates in all directions, the temperature rate, and the geometry of each
layer must be specified. In addition, the initial overail stresses and strains and those of the
fiber and the matrix and the initial temperature are needed. The ply or laminate strains as
well as the ply stresses can then be obtained by integrating Eqs (2—13) simultaneously.

Strain and Temperature Control. For strain and temperature control the strain
rates, the temperature rate, the geometry of each layer as well as appropriate initial
conditions are needed. The average stress and the ply stresses are obtained simply by
solving Eqs (2-13) simultaneously.

NUMERICAL SIMULATION

Eqs. (2-13) constitute the differential equations which describe the laminate
behavior. Due to the nonlinearity a closed form integration is impossible for realistic
material data. To show the capability of the theory numerical experiments must be
performed using the same boundary and initial conditions as in real experiments. Once
integrated all the variables appearing in the governing differential equations are known as a
function of time. The variables of interest can be plotted and represent the response of the
theory to the particular boundary conditions. For different boundary conditions a different
response will be obtained since TVBO exhibits path dependence.

Also material properties must be known for the fiber and the matrix as a function of
temperature. These material properties include the usual elastic properties and the
coefficient of thermal expansion and the inelastic properties of the TVBO model. For the
purposes of this paper a Boron/ Aluminum system is simulated. The matrix viscoplastic

roperties are known at room temxenture from exrrimenu reported by Yao and Krempl
1985) for a 6081-T6 Al alloy. An Al alloy of the same designation may have slightly
different properties when used in a composite, but the general trend is regroduced. ince
no experimental results were found at other temperatures a plausible temperature
dependence was postulated. The elastic properties and the coefficient of thermal expansion
for the B fiber are listed in Table 1. They are assumed to be independent of temperature
for simplicity. The matrix properties which are close to 6061-T6 Al alloy are listed in

Table 2. They yield the matrix stress—strain diagrams at a strain rate of 10~ s°! depicted
in Fig. 2. A decrease in modulus, flow stress and the u{mptotic tangent modulus with
increasing temperature is modeled. The following numerical experiments represent tests
with a material which has the stress—strain diagrams depicted in Fig. 2.

Two angle—ply laminates with plies of equal thickness, (40°)s and (#12°),, are chosen
for the numerical simulations.

The numerical integration was done on a Sun 3/60 work station using the IMSL
routine DGEAR. The output data file was then plotted using Templegraph. To integrate
‘:d':; of coupled differential equations for a laminate approximate 30s running time is
n .

13




The composite cools Jown {rom the manufacturing temperature at a constant rate of
0.033 °C/s without the application of external forces. It is assumed that the composite is

stress [ree at 660 °C and that perfect bonding between fiber and matrix and between plies
start at that temperature. Fig. 3 shows the development of the matrix stresses in the

1—direction for +12° ply of & B/Al (412°), laminate with ¢! = 0.1. Since the coefficient of
thermal expansion is larger for the matrix than for the fibers a tensile matrix stress is
developed which increases with decreasing temperature. Also shown are the evolution of
matrix equilibrium and matrix kinematic stress, the two state variables of the TVBO. At
point 1 room temperature is reached. Due to the viscoplastic nature of the matrix the

stresses relax to point 2 with time. The inset shows the overstress o ~ g1, which "drives"
the inelastic deformation, rapidly decreasing with time at room temperature. After 30 days
the residual stress state is nearly constant. The current value of the stress, equilibrium and
kinematic stresses enter as initial conditions for simulation of subsequent tests. They can
affect the modeled subsequent behavior and therefore time appears to influence it. During
the first 30 days the model predicts that the subsequent response depends on time but
becomnes independent of the rest time thereafter. On the scale of this graph the kinematic

variable f7 does not appear to change with time. However, the digital output confirms the
slight increase predicted by Eq (5).

In the simulation of subsequent behavior the residual stresses at point 1 and at point
2 form the initial conditions for Case 1 and Case 2, tespectively.

en of Resid egses og Room B DE Mechani Heh

In this case (¢0°), and (+12°), B/Al angle-ply compotite laminates with ¢’ = 0.1 are
considered and uniaxial numerical tensile and compressive tests in the i—direction are
performed at a strain rate of 10 s°!. When a strain magnitude of 0.5% is reached the

overall stress is kept constant to allow creep deformation to evolve during a short period of
300s.

Fig. 4 shows tensile and compressive overall siress—strain behavior of tests of a (£0°),
laminate in 1—direction (which is the fiber direction in this case) for no residual stresses
and with residual stress states corresponding to Case 1 and Case 2.

A significant influence of residual stresses on the laminate stress—strain diagram is
demonstrated. It can be seen that the siress—strain disgram with no residual stresses is
point symmetric to the origin and that the residyal stresses promote tension—compression
asymmetry. Due to the high initial values of the matrix stresses for Case 1 more
asymmetry is found for Case 1 than for Case 2. On the graph the initial slopes are equal
but the transition to inelasticity and the initial inelastic l\ope are dependent on the
residual stresses. The level of the tensile overall stress is considerably lower for Case 2
than for the case without residual stresses. However the opposite is true in the compressive
direction. Since it is unlikely that a tensile test will be performed right after reaching room
temperature and since the overstress decreases rapidly with time, see inset in Fig. 3, an
experiment would likely yield the results of Case 2. During the 300s stress hold a small
amount of creep strain develops which on the scale of th:ofraph is equal in tension and
compression and for all three cases. This creep strain is "cold creep” which is observed at
room otempemure, see Yao and Krempl [1985] and Ericksen [1873], and is modeled by
TVBO. ’

The same tests are then performed on (#12°)s laminates. The laminate stress, the
matrix stress and matrix equilibrium stress of a ply are plotted vs. overall strain in the
1—direction in Figs. 5, 6, and 7. The laminate stress levels are somewhat lower than the

corresponding tests for the (40°),. Again residual siresses promote tension/compression
asymmetry. In Fig. 5 all stresses start from sero and initially the matrix overstress ¢, —

® is zero on the graph. Consequently the laminate stress—strain diagram is linear with
%line correspoading ilartic slope. As overstress develops the stress—strain diagram bends
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over and proceeds with a reduced slope. Simultaneously it is observed that the overstress
is nearly constant. (A characteristic of TVBO is the attainment of an asymptotic solution
for constant strain (stress) rate tests, see Yao and Krempl [1985] and papers cited therein.)
When the stress is held constant creep develops and the overstress decreases. This
indicates that creep is primary, i.e. the strain rate decreases. The creep strain of the three

cases for (20°), is smaller thaa for (¢12°),. For Cases 1 and 2 of both laminates more creep
strain is accumulated in tension than in compression owing to a slightly larger tensile than
compressive matrix overstress. The difference of creep strain accumulation between cases
with and without residual stresses negligible on the scale of the graph. Also the final value
of the overstress appears to be independent of the initial conditions. In Figs. 6 and 7 the
initial values of the matrix stresses are clearly noticeable. Finally the characteristic
overstress value is reached as straining continues.

DISCUSSION

The thermoviscoplasticity theory based on overstress was used in conjunction with
the vanishing fiber diameter model in a simple analysis of the mechanical behavior of
angle—ply composite laminates with and without residual stresses. Realistic but assumed
material properties permitted the execution of numerical experiments. They show how the
residual stresses develop during cool—down and subsequently influence the mechanical
behavior. The validity of the analysis rests on the material properties used which were
partially determined from experiments and partly established with plausible assumptions.
While the magnitude of the stresses and strains may vary with material data the general
trend of the results will not. When the stress level after cool down exceeds the elastic
range TVBO will always predict a time—dependent redistribution of the residual stresses.
The magnitude of the stress change will depend :Fl.in on the material properties. The
diminishin? rate of redistribution which ultimately comes to rest is again a general
property of TVBO. The same is true for the creep behavior, the present version of TVBO

will always predict primary creep as long as the fiber is elastic and the constant p® > 0.
To represent high temperature creep where secondazy creep can be observed at stress levels
within the quasi linear region of the stress—strain diagram the growth laws for the state
variables must be augmented by a static recovery term.

The tensile stress—strain diagrams reported in Fig. 4 correspond qualitatively with
those reported by Cheskis and Heckel [1970]. In both cases a break in the slope of the
overall stress~strain diagram is observed when the matrix starts to deform inelastically in
an appreciable manner. The presence of residual siresses shift the location of this break
point, see Fig. 4. Also residual stresses cause tension—compression asymmetry and larger
tensile creep strain.

The initial residual matrix tensile stresses of a ply in 1-direction introduce the bias
to model the temsion/compression asymmetry. This can be seen in Figs. 5-7 for the
laminates. The presence of tensile residual matrix stresses is responsible for the early yield
in the tensile direction and the delay for the compression tests, see Figs. 6 and 7. In
isothermal TVBO the growth laws for the stress and the equilibrium stress are formulated
in such a way that the asymptotic equilibrium stress is independent of the initial
conditions. This property seems to carry over to the present composite theory.

Another feature of the present theory is its ability to model rate dependence. The
redistribution of the residual stresses while the compasite element was sitting stress free at
room temperature after cool~down from manufacturing temperature is caused by the
rate—dependent constitutive equation. The theory predicts that this redistribution will
nearly come to an end after some time which depends on material constants, especially the
viscosity function used. In the present application the redistribution is almost Ginished
after 30 days. While the stresses redistribute the time at room temperature appears to
have an influence on the subsequent behavior. Experimental results confirming this
behavior are not available. Since the changes in residual stresses are most rapid initially,
see inset of Fig. 3, the changes are hard to detect experimentally. From a knowledge of the
properties of TVBO it can be said that an increase in the cooling rate would increase the
residual stresses at room temperature and their redistribution rate. However, the influence
of rate is likely going to be small. Specifically, the stress cannot be lowered significantly by
decreasing the cooling rate. The lowest stress that can be reached is the asymptotic
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equilibrium stress. It is not knowa whether this corresponds to the equilibrium stress
plotted in Fig. 3 exactly. But it would not be unreasonable to assume that it would be the
stress reached in an infinitely slow cooling rate. It should also be noted that this is the
limit in continuous cooling. The theory permits a stress drop below this limit when the
temperature is held constant as can be seen in Fig. 3. The rate dependence will increase

with an increase of the matrix mode of deformation. For the (#12°), laminates the creep
strain in 300s is slightly higher than that for the corresponding tests in the fiber direction,
compare Fig. 4 with Figs. 5§ —7. An increase in the angle ¢, would accentuate the creep
behavior which will always be primary for the material properties postulated in Table 2.

The present paper intends to show the capabilities in principle. For the exact
modeling of a metal matrix composite various refinements are possibie. Included are the
consideration of of modeling of cyclic hardening/softening of the matrix or the inclusion of
"high temperature” creep ﬁy including a static recovery term in the growth law for the
state variables, see Krempl and Majors [1980]. Also for a specific composite the
uetermination of the matrix and fiber properties as a function of temperature is a
formidable task. The simple VFD model could be replaced by an advanced one. However,
the present simple approach has given some insight into the influence of residual stresses
and of rate—dependence on the mechanical bebavior of & metal matrix composite.
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Table 1.
Elastic Proparties for Boroa Fiber

Properties Boroa

Efy (MPa) 413400 *)
i : 0.2 *
Gl (MPa) 170830 **)
af (m/m/C) 6.32-8 (***)
Ef; (MPs) 413400 (*)
Gls (MPa) 170830 (**)
of (m/m/°C) 6.32-8 {**9)

*) Kreider and Prewo [1074)
(**)  Estimate
(***) Tsirlia [1085)

Table 2.
Tharmoslastic and Tharmoviscoplastic Properties of the Matrix

E* = M8701 - (g3y)') (MPa) (°), »* = 033 (*°)
G® = 280061 — (g39)'] (MPs) (%)
o® = 2.35B-8 + 24T6E-KT - 273) (m/m/°C) (**)
(P} = #°[C7)/E", P* = EY/K"

Viscosity fuactios K1) = K1+ )

R = 314200 (5), ky = 7138 (MPs) (**°), ky = B3 - 0.05T-273) (**)(***)
Viscosity Factor K" - E®

EY = 6101 - (,}',)'] (MPs) (**), A® = T2 {1 - (,}',)'1 (MPa) (**)

Shepe fusction O[] = ¢, + (cr<c)exp(—cil®)

¢ = 16511[1 — (gFy)) (MPa) (%), &3 = TWI01 — (gTg)’] (MPa) (**)

¢ = 8.43B-3 4+ 1.00E—4{T-273) + LOI4E-&(T-273)! + 5.304B-0(T-273)}
(MPa) (*°)

Indastic Polsson's Ratio: 0.5

T =%, 183K < T < 933K

(°) Estimate. Temperature dependence dwe to Hillig {1985)
(**) Ratimate
(***) Yao and Krempl (1088}
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APPENDIX

For ihe transversely isotropic (fiber) and the isotropic (matrix) elastic properties the
uuel;l designations are employed. For convenience the following quantities are defined and
us

Exx = ¢/Ef; + ¢*E*
L = vi,E* - EL,
;;,’c"’;'"'c.f.

The components of the overall elastic compliance matrix T are

(C)gy = =1
¥ En
f [ fa.ny2
Ty m Sy So o CCOL7
€ Efy E* ELE'E,
(TN)ay = =25 = (TY)yy
En
. ef . c®
(T = G—{: + E.-
with all other (C!)y; = 0.

The viscosity matrix (K®) is given by the components (the argument of the
viscosity function k® is omitted)

o) o CUE®

(k)i T

T - c® . C'L
(£7)3f = =S + 051

.-l o 2C" ¢fL
= et g,
. Y - <*E*
) = ke

- 3c'_
() =

All other (K®)i} = 0.
The components of the "extra terms® (Rf)™ and (R®) are

-1 o cTEf
(R _n-E!xEn

Bt m ot Bl __€fL (e pr g
B =~ By (B o~ ek
| 4
(t’)ﬂ - —<E£En V:yz;x - ";!En)
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(A3} = #-(uz,zz. - UhyEL)
13l = ! Gl
(0 =~ ety
with all other (Rf)j} = 0.

(Re)ii = - 2
=

R);) = —cn LDy €Tl (ape_ ape
(R%)yy (E) + (=) 'Ea )

(B2 = o ark® - VE)
(B®)s} = i(f!:- -ve)
(R%):d = .c-(%:)_’
All other (R®){} = 0.
The overall coefficient of thermal expansion vector @ is represented by

(@)= = (colEfs + Sa"E")/Exx
(G)y = ol + c'a‘—c-;'il-'(o'- of)

(@s=0
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ABSTRACT

The vanishing fiber diameter model together with the thermoviscoplasticity theory
based on overstress are used to analyze the thermomechanical ratchetting behavior of a
SiC/Ti unidirectional metal matrix composite. For the present analysis the fibers are
assumed to be isotropic thermoelastic and the matri» ~onstitutive equation is the isotropic
thermoviscoplasticity theory based on overstress wi-  :mperature- lependent recovery of
state. Yield surfaces and loading/unloading condit:*  ire not use. in the viscoplasticity
theory for the matrix in which the inelastic strain rat  solely a function of the overstress,
the difference between stress and equilibrium stress. state variable of the theory. All
material functions and constants can depend on current temperature. Assumed but
realistic material elastic and viscoplastic properties as a function of temperature which are
close to SiC and Ti, respectively, permit the computation of the stresses of the constituents
and mechanical, thermal, creep, and ratchetting strains.

Numerical experiments of in—phase and out—of-phase thermomechanical loadings are
performed in fiber and transverse directions. In the fiber direction very little difference is
found in the ratchetting behavior for in—phase and out—of—phase loadings, while in the
transverse direction in—phase loading accumulates more mechanical ratchetting strain than
out—of—phase loading. In the fiber direction very little deviation from linear behavior and
very small ratchetting strain are observed. Rate dependence of the matrix is the driving
force of the significant transverse ratchetting strain.

INTRODUCTION

Inelastic strain accumulation under cyclic stress controlled loading (ratchetting
behavior) is a special design concern. Chaboche [1] introduced cyclic time—independent
plasticity theory to interpret the ratchetting behavior of 316 stainless steel. He concluded
that an increase of stress range for a given mean stress will increase ratchetting strain.
Ruggles and Krempl, [2,3] stm%ed the zero—to—tension ratchetting behavior of 304 stainless
steel and found that, in this case, rate dependence is the major driving force of the inelastic
strain accumulation.

The purpose of this paper is to investigate the ratchetting behavior of SiC/Ti fibrous
metal matrix composite in both fiber and transverse directions under thermomechanical
loading by numerical experiments. The fiber is assumed to be thermoelastic and isotropic,
and the matrix is assumed thermoviscgglastic and isotropic including static recovery of
state. The vanishing fiber diameter model (4] is combined with the thermoviscoplasticity
theory based on overstress (TVBO) [5] for a composite model.

Numerical experiments of uniaxial zero—to—temsion mechanical loading (stress—
control) with simultaneous temperature changes are performed. In this case the
temperature and the load can be made to increase simultaneously (in—phase loading) or
mechanical loading and temperature can move in different directions (out—of—phase




loading), see Fig. 1. Of specific interest is the difference in ratchetting behavior in
in—phase and out—of—phase loadings. Both the fiber direction behavior and the transverse
direction behavior for a SiC/Ti composite are investigated.

THE COMPOSITE MODEL

For the representation of the equations, the usual vector notation for the stress tensor
components ¢ and the small strain tensor components € are used. Boldface capital letters
denote 6x6 matrices.

Stresses and strains without a superscript designate quantities imposed om the
composite as a8 whole. Superscripts f and ® denote fiber and matrix, respectively. The fiber
volume fraction is cf and ¢ denotes the matrix volume fraction with ¢f + cm = 1.

A unidirectional fibrous composite element is assumed with fiber orientation in the
3—direction. When the VFD [4] model is combined with the TVBO model ‘5} the
composite is characterized by the following set of equations: (details can be found in [6])

¢ =Tlo+ (K*)x® + (RY) 1! + (R®)'6® + aT (1)
together with a separate growth law for the 0% component of the matrix

f £ 5
o3 =-E:—&3—£— L(Ul + bz)—c E3E
33 33 33

{Ff:_ﬁ:-—] [x! ~0.5(% + x!)]}

_cfELER ([ 1 (iAESy — o4 ]
Ess {[(Ess)z‘ Wk —vhibhy)

1 ) an i Efy ¢_E®
-(_El—)2(V-E - "E )] (014 a2) + (Egz)zas (En)2a?}
_SELEY iy @)
Ess

In addition growth laws for the two state variables of TVBO, the matrix equilibrium stress
g= and the kinematic stress fo, are given as

g = arom + 7 B Tlom 4 {qrire) - [Pl -

P k,’[‘;,]-g;n-[n-l 3)
S e ) (4)

x* [ re




with

(F%)? = (x%)" H (=)
() = (") B (=)

(A®)?
(m")* = (g*)" H (")
x*=o0"—-g"
ff=g"-f (5)

The recovery function R for the matrix is postulated to be

R[II®] = %g" {sign(U) [1 -1+ lUI)l-C]
ewcri-a s ) .

where

U = -R4 + Rs(—=Ryy.
2 — R

V = R4 + Rs(—+ Ry),
R, — R

and R,, R, Rj; are functions of temperature. The recovery function depends on
temperature and equilibrium stress, and is assumed to activate at 400° C when equilibrium
stress reaches 300 MPa (threshold), and to become saturated if equilibrium stress is larger
than 360 MPa. The threshold value decreases and the saturated value increases as the
increase of the temperature. Recovery is negligible when the current temperature is lower
than 400°C. A discussion of the recovery of state formulation within TVBO is given in [7].

In the above C-! is the overall compliance matrix and (K®)-t denotes the viscosity
matrix. The matrices (Rf)-1 and (R®)-! contain time derivatives of the elastic constants of
the fiber and the matrix, respectively. All components of the matrices C-t, (Kz)-t, (Rf)-,

£Rm)'l, and H, and the definition of the quantities Ej3, L, & are given in [6]. The viscosity
unction ko{I's] and the dimensionless shape function qu{I's] are decreasing (qm[% <1lis
required) and control the rate dependence and the shape of the stress—strain diagram,
respectively. (Square brackets following a symbol denote "function of".) The quantity p=»

represents the ratio of the tangent modulus EY at the maximum inelastic strain of interest
to the viscosity factor Km. It sets the slope of stress—inelastic strain dia.gram at the
maximum strain of interest. A detailed explanation of the TVBO and the composite model
are given in (5] and [6], respectively.

NUMERICAL SIMULATION

Egs. (1) — (5) constitute the three dimensional model which must be reduced to the
one dimensional case. The boundary conditions must be specified in addition to the
uniform temperature history. Also the material properties of the composite constituents
must be known as a function of temperature. Only the elastic properties of the SiC fibers




are known reasonably well, see Table 1. The thermoviscoplastic properties of the
Ti—-matrix were assumed by using data from Kremp! et al. [8] of Ti—alloy at room
temperature and by postulating that the stress level at a given strain and strain rate
decreases with increasing temperature. The temperature dependence of the constants is
given in Table 2. When TVBO is integrated for the tensile test with a constant strain rate
of 10-4 5-1 the isothermal stress—strain diagrams depicted in Fig. 2 result. They represent
the postulated matrix properties.

For the integration of the coupled set of differential equations the IMSL routine
DGEAR is used.

Numerical experiments of uniaxial zero—to—temsion mechanical loading (stress—
control) with simultaneous temperature changes are performed in both fiber and transverse
directions. In Fig. 3 in—phase stress and temperature controlled thermomechanical loading
is applied in fiber direction to reach 450 MPa and 320° C using the indicated rates. The
rates are then changed to impose five cycles of in—phase loading in the fiber direction. In
Fig. 3 both the total and the mechanical strain are used to plot the stress—strain diagrams.
Only little ratchetting strain is accumulated, and some matrix stress relaxation is
observed. Matrix stress range and matrix mean stress of the first cycle are 378 MPa and
84 MPa, respectively. In Fig. 4 the same initial loading is performed followed by five
cycles out—of—phase loading. The matrix stress range (504 MPa) and the matrix mean
stress (100 MPa) is increased compared to Fig. 3. Although the ratchetting strain is higher
than in Fig. 3 it is still smail and does not appear to be progressive. The same numerical
processes are now applied in transverse direction and the results are shown in Fig. 5, 6 for
in—phase and out—of—phase cases, respectively. The matrix stress ranges and the matrix
mean stresses are the same for both cases. Significant ratchetting strain is accumulated
during the five cycles of in~phase loading in Fig. 5, while only little ratchetting strain for
the out—of—phase case is shown in Fig. 6.

DISCUSSION

Ratchetting, the accumulation of strain under cyclic loading involving stress boundary
conditions, is driven by inelasticity, it is not a phenomenon of linear elasticity. Isothermal,
time(rate)—independent analyses, see Chaboche [1], and rate dependent, viscoplastic
analyses, see Krempl and Ruggles [3], have been performed. Depending on loading
conditions plasticity or viscoplasticity etfects may dominate.

In the present case variable temperature and composites are considered. For in—phase
and out—of—phase loading in the fiber direction, the cyclic stress range used is such that
very little inelasticity develops. This is mostly due to the stiffening effects of the fibers.
As a consequence insignificant ratchetting strain is seen to develop in Figs. 3 and 4.
Although one would expect more ratchet strain accumulation for the in—phase case than for
the out—of—phase case on account of the simultaneous increase of stress and temperature
and a simultaneous decrease in strength, this expectation is not borne out by the
calculations.

However, the results for the transverse direction confirm this expectation, see Figs. 5
and 6, where in—phase loading shows considerably larger ratchetting strains than the
out—of—phase case. In the absence of any reinforcement effects of the fibers, the behavior is
completely determined by the matrix properties and ratchetting turns out to be significant
in Fig.5. The decrease in temperature while the stress increases results in a considerable
reduction of the ratchet strain in Fig. 6. From this analysis it appears that the transverse
direction is more susceptible to ratchetting than the fiber direction. At the same time it




has to be realized that the VFD model provides no restraint in the transverse direction so
that the computations give certainly a worst case scenario.

In Figs. 3 through 6 we have plotted both the total and the mechanical strain for
illustrative purposes. Due to the stress—controlled loading the thermal strain simply adds
to the mechanical strain. As a consequence the stress—strain diagrams using the total and
the mechanical strain are very similar. The situation would be different in strain
controlled loading which could be simulated as well.

It has to be realized that the simulation has been performed with assumed material
properties, this 15 especially so for the inelastic properties of the matrix material. The
predictions, which appear to be reasonable, are, of course, only as good as these
assumptions. For an application the fiber and matrix properties should be determined b
suitable mechanical tests at various temperatures (isothermal tests suffice for TVBO%
before the model is used to numerically predict the behavior of the composite. These
predictions should then be compared with actual tests performed under the same boundary
conditions as the numerical experiments. If both results agree reasonably the theory is
validated for design use. Unfortunately no such experiments appear to be available.

Although recovery of state was included in the formulation, the numerical experiments
involve only short times in which recovery of state does not significantly contribute to the
deformation behavior. A discussion of recovery of state formulations and their effects on
model predictions can be found in Majors and Krempl [7]. The present formulation
includes the recovery term only in the growth law for the matrix equilibrium stress, see Eq.
(3). It enables the modeling of secondary creep in the quasi-linear region of the
temperature above the thresholds given after Eq. (6).
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Table 1 Thermoelastic Properties for SiC Fiber

Efs= Ef, (MPa)

vk
Gli=Gfls (MPa)

of = of (m/m/°C)

3740001 - (g)’} (*)

0.2 (*%)

155833(1 — (537 (*)
4.3E-6 R.T. - 1000°C

(***) 5.6E—6 1000°C - 1350°C
—4.9E-6 1350°C - 1410°C
5.6E—6 > 1410°

*): Estimated, temperature dependence due to Hillig [9]
**): Estimate
***):  Lara—Curzio and Sternstein [10]




Table 2 Thermoelastic and Thermoviscoplastic Properties of the Ti Matrix with

Temperature—Dependent Recovery Function (*)

E® = 51149 + 696.7T — 2.205T2 + 0.0025T® — 1.017T* (MPa), T < 773°K
= 297251 — 668.7T + 0.693T? — 3.41E-4T? + 6.26E-8T*, T > 773°K

G™ = 19523 + 266T — 0.842T2 + 9.52E—4T? — 3.88E~7T* (MPa), T < 773°K
= 113455 — 255T + 0.265T% — 1.3E—4T? + 2.39E-8T*, T » 773°K

» =0.31, ¢® = 9.0E—6 (m/m/°C)

k; = 314200 (s), k, = 117 (MPa)
k; = 20.64 — 7.3E-3T (MPa), T < 773°K
= 16.52 — 0.013T + 3.53E—5T2 — 3.64E—8T3 4 1.25E-11T4, T > 773°K

E} = 1333.3 —0.6937T (MPa)

A" = —44 + 8.82T — 0.034T? + 4.86E-5T3 — 2.45E-8T* (MPa), T ¢ 773°K
= 2712 - 6.3T + 0.0057T2 — 2.31E—6T? + 3.53E-10T*, T > (73°K

¢, = 152941 — 954T + 4.56T? — 9.37TE-3T? + 6.57E—6T* (MPa), T < 573°K
= —846653 + 4706T — 8.87T? + 7.11E-3T3 — 2.08E—6T*, 573 < T < 1073°K
= 157042 — 263T + 0.146T2 — 2.58E—5T3 ~ 5.22E~10T%, T > 1073°K

c2 = 166382 — 612T + 3.2T? — 7.12E-3T? + 5.19E—6T* (MPa), T < 573°K
= 160341 — 99.6T — 0.104T? — 6.8E—5T* + 1.57E-8T*, 573 < T < 1073°K
= 71000 + 6.11T — 0.0455T2 + 7.91E-6T? + 2.35E-9T*, T > 1073°K

c3 =—0.124 + 9.8D-4T — 2D—6T? + 1.57E-9T* (MPa™), T < 573°K
= —1.634 + 8.98E-3T — 1.6E~5T? + 9.67E-9T?, 573 ¢ T < 1073°K
= -14.44 + 0.017T — 1.41E—6T? — 7.42E-10T?, T > 1073°K

Rl = 2773 —15.6T + 0.044T? — 5.47E-5T? + 2.39E-8T* (MPa), T < 773°K
= 906 — 1.82T + 1.22E-3T? - 2.69E~7T?, T » 773°K

R2 = 5355 —38.7T + 0.116T? — 1.55E—4T? + 7.42E-8T* (MPa), T < 773°K
= 929 — 0.55T — 1.21E-3T? + 1.26E—6T? — 3.2E-10, T > 773°K

R3 = 9.4E—4 + 5.9E-6T

Inelastic Poisson’s Ratio: 0.5

® Estimated and Krempl et al., [8]
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